
Algolympics 2015

Solution Sketches

Problem B: Make Gawa This Program

● Just follow instructions carefully!
● Tests accuracy, not running time.
● General Tips:

○ Code defensively.
○ Think of lots of corner cases.
○ Samples not representative of actual data.
○ Look at constraints, try extremes.

Problem D: Slicing Number Cakes

● Brute force: Try all possible cuts.
● Too slow.

Problem D: Slicing Number Cakes

● Brute force 2: recursively compute best(i, j)
○ best partition of last i digits with exactly j slices.

● best(i, j) = max(1 ≤ k ≤ i) best(k-1, j-1) + N[k..i]
● best(i, 0) base case, single partition.
● Too slow, still tries everything.

Problem D: Slicing Number Cakes

● Insight: best(i, j) only depends on i and j, not on
previous choices beyond digit i.

● Memoize results in a 2D table.
● Only need to compute each entry once.
● Running time proportional to:

○ size of table × time to compute each entry.
○ O(digits(N) × digits(N) × S).

Problem D: Slicing Number Cakes

● Alternatively, compute table best(i, j) bottom-up.
○ Also called dynamic programming.

● Same running time, but probably slightly faster.
○ O(digits(N) × digits(N) × S).

Problem F: Alien Defense Deux

● Sol. 1: Try all squares, count empty ones.
● Too slow.

○ ~O(n5)

Problem F: Alien Defense Deux

● Sol. 2: For each top-left corner, try all squares in
increasing size incrementally.

● Optimizations:
○ Process only “additional” squares as you go.
○ Break on the first non-empty square.

● Faster, but still too slow in the worst case.
○ ~O(n4)

Problem F: Alien Defense Deux

● Sol. 3: Precompute table sums, so each square
can be checked non-empty in O(1).
○ Also called sparse tables.

● Faster, but still too slow in the worst case.
○ ~O(n3)

Problem F: Alien Defense Deux

● Sol. 4: Binary search the largest nonempty square.
● Now passes! (with reasonable implementation)

○ ~O(n2 log n)

Problem F: Alien Defense Deux

● Sol. 5: Dynamic programming: f(i, j) = largest
nonempty square with top-left corner (i, j).
○ Can you find the recurrence?

● Optimal!
○ O(n2)

Problem C: Rigid Trusses

● Insight 1: “horizontal bars” in each column parallel.
● Insight 2: “vertical bars” in each row parallel.
● Both properties of rhombuses.

Problem C: Rigid Trusses

● Insight 3: If (i1, j1), (i1, j2), (i2, j1) rigid, then (i2, j2) also
rigid.

● Insight 4: Any rigid cell is either initially rigid or can
be shown rigid by repeatedly applying Insight 3.

Problem C: Rigid Trusses

● Insight 5: Insight 3 and 4 equivalent to
connectivity in bipartite graph!
○ “Insight 3”: If (i1, j1), (i1, j2), (i2, j1) connected, then (i2, j2)

also connected.
○ “Insight 4”: Any connected pair can be shown to be

connected using “insight 3” (which is just computing
“transitive closure”)

Problem C: Rigid Trusses

● Solution: Given grid, interpret as “bipartite
adjacency matrix”, and simply check if connected.

● Single BFS/DFS, easy to code!
○ O(RC) time, optimal

Problem E: N-Fruit Combo

● Each line covers an infinite strip with width 6 in
some direction.

● Problem reduces to: What is the minimum width of
the given points?

Problem E: N-Fruit Combo

● Insight: The minimum-width strip touches two
points on the boundaries.

● Solution: For every pair of points, check their
perpendicular bisector, and consider its width-6
strip.
○ The answer is yes if all points are in it, for some pair.
○ O(n3), passes

Problem E: N-Fruit Combo

● Insight: Width only dependent on convex hull
○ Can be computed in O(n log n)

● Problem is now:
○ Given convex polygon, what is maximum width?

Problem E: N-Fruit Combo

● Idea 1: For each edge, find “farthest point”.
○ O(n2)

● Idea 2: For each edge, find “farthest point” via
ternary search.
○ O(n log n)

● Idea 3: Use rotating calipers.
○ O(n)
○ but overall O(n log n) due to convex hull computation

Problem G: For Science™

● For each node
○ recursively compute set of distinct elements.
○ Take the set union.

● Each node x processed in O(size(x) log size(x)).
● Worst case is a tall tree.

○ Overall O(n log n).

Problem G: For Science™

● Insight: when combining two sets S and T, “merge
smaller to larger”:
○ simply insert each element of the smaller set to the

larger set.
○ Now runs in O(min(|S|,|T|)) instead of O(|S| + |T|).

● Requires destroying the copy of the larger set
○ But it’s okay since we only need it once.

● What is the complexity?

Problem G: For Science™

● Complexity:
○ Whenever each element is inserted to a new set, the

size of the set it is in at least doubles.
○ The size of the largest set is n.
○ Can only double at most lg n.
○ Therefore, each element is reinserted ≤ lg n times.
○ Overall work is thus ≤ n lg n.
○ Set insertion is O(log n), so overall O(n log2 n), passes!

Problem A: All About The Base

● a(a+1)/2 = b2 is equivalent to:
● (2a+1)2 - 2(2b)2 = 1, which are solutions of:
● x2 - 2y2 = 1.
● This is a Pell equation.

○ They have well-known solutions.
○ A whole math theory exists behind them.
○ We recommend reading through it!

Problem A: All About The Base

● The n’th solution (xn, yn) can be shown to be:
○ (xn + yn sqrt(2)) = (3 + 2 sqrt(2))n

● Can be computed recursively via:
○ (xn + yn sqrt(2)) = (xn-1 + yn-1 sqrt(2)) (3 + 2 sqrt(2))
○ with base case (x0, y0) = (1, 0).

● Again, I suggest reading about Pell’s equations to
prove them!

Problem H: Algols for Algolympia

● Insight: ai + aj is “not too large”.
● Thus, for each s, compute how many pairs (ai, aj)

have ai + aj = s.
○ The answer can then be computed in O(n log n) after

that. (how?)

Problem H: Algols for Algolympia

● Let cv = number of i such that ai = v.
● Let dv = number of (i, j) such that ai + aj = v.
● Then:

○ dv = sum(r + s = v) cr cs

○ (almost. Need to handle double counting, but this is the
bulk)

Problem H: Algols for Algolympia

● dv = sum(r + s = v) cr cs

● This is polynomial multiplication!
● Let C(x) = c0 + c1x + c2x2 + ...
● Let D(x) = d0 + d1x + d2x2 + …
● Then D(x) = C(x)2

Problem H: Algols for Algolympia

● Fast polynomial multiplication algorithms are
known.
○ Karatsuba’s algorithm: O(n1.59)
○ Fast Fourier transform: O(n log n)

● I strongly suggest reading about them!

More Detailed Solutions

● Available at:
○ https://www.overleaf.com/read/wsdfvqvbmhwy

https://www.overleaf.com/read/wsdfvqvbmhwy

Thank you! ● A: All About The Base
○ Asuncion, Atienza

● B: Make Gawa This Program
○ Asuncion, Atienza

● C: Rigid Trusses
○ Pilario, Atienza

● D: Slicing Number Cakes
○ Pilario, Atienza

● E: N-Fruit Combo
○ Pilario, Atienza

● F: Alien Defense Deux
○ Atienza, Dumol

● G: For Science™
○ Atienza, Yao

● H: Algols for Algolympics
○ Atienza, Burgos

● Kevin Charles Atienza
● Jared Guissmo Asuncion
● Karl Ezra Pilario
● Tim Joseph Dumol
● Payton Robin Yao
● Alvin John Burgos

