


Introduction

We hope you enjoyed the problems from the UP ACM Algolympics On-Site Final Round!
You can view the solutions of the problems here: https://algo2020.upacm.net/
resources/algo2020finals_solutions.zip

We feel that this round’s problems are more interesting and harder on average than the
Elimination Round problems. We believe it is on par with an average ICPC regionals problem
set.
We also think that the participants underperformed during the final round. We urge you to
train further to get much better results and fare better next time, especially in higher-stakes
contests like ICPC.
The problems will be available on the Algolympics Codeforces group page for practice. They
will be available forever.1
If you wish to discuss the problems (hints, solutions, etc.) with fellow participants and/or
the Algolympics scientific committee members, a Discord server has been set up just for
that. Please email algolympics@upacm.net with your name, team name and school to get an
invite to the Algolympics Discord server.
Manymembers of theAlgolympics scientific committee are also part of theNationalOlympiad
in Informatics - Philippines (NOI.PH), an algorithmic competition aimed at high-school stu-
dents. We invite you to say hello in our Discord! Please email ask@noi.ph with your name
and school if you wish to have access to the NOI.PH Discord server.
If you need more practice, please stay tuned for the NOI.PH on-site final round on April. A
mirror will be held around the same time which you can join for practice. The NOI.PH online
elimination round is also still available for practice.
All past problems of official NOI.PH contests can be accessed through this link: https:
//noi.ph/past-problems.
Please regularly check your email, the Algolympics Discord and UP ACM’s Facebook page for
news and other potentially important announcements.
Thanks for joining Algolympics 2020, and we hope to see you next year!

1where “forever” means “for as long as Codeforces exists” :P
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Problem A: The Slowden Files

Setters: Kevin Atienza
Testers: TBA
Statement Authors: JD Dantes
Test Data Authors: JD Dantes
Editorialists: JD Dantes

A.1 Solution

Theminimummoves needed to turn one string to the other using the given operations (add,
remove, or replace a character) is more commonly known as the Levenshtein distance or string
edit distance. Getting the Levenshtein distance of two strings is a classic dynamic program-
ming (DP) problem. If you are new to dynamic programming, I encourage you to read up
and search about it as there are many resources online; I have also written and compiled
https://gitlab.com/jddantes/the-code-project/-/tree/master/dynamic-programming before.2
For the Levenshtein distance specifically, try coming upwith theDP recurrence. If you analyze
it, you’ll find that you can find the Levenshtein distance in O(mn) time complexity. However,
for this problem, the bounds are in the order of105, so the usualO(mn) approachwould lead
to TLE. In other words, implementing this DP approach directly is not the intended solution
for this problem. What else can we try?
We observe that we are not looking for the general case, but only for a smaller, more specific
subset: edit distance from 0 to 3. Thus, we can try going through some test cases for these
smaller edit distances.
If the allowable distance is zero, then we simply check if the two strings are equal.
The next case is if the distance is exactly one. There are two cases for this. The first is if
the lengths of the strings are exactly one character apart. In this case, we must erase one
character from the longer string, and then both strings should match. The second case is if
the two strings are of the same length. In this case, there should be exactly one index where
the characters in both strings are mismatched.
Let’s now go to the scenario where the distance is exactly two. We consider the cases where
the lengths of the two strings differ by zero, one, or two only; we note that generally, if the
distance between two strings is d, then the difference between their lengths should only be
at most d as well. Let’s denote the two strings as A and B, with |A| ≤ |B| (where we use | · |
to denote the length). We can look at the extreme cases:

• |B|− |A| = 2. Similar to before, we choose two characters to delete from B. We can
keep matching A and B from the start, then delete from B if a mismatch occurs.

• |B|− |A|= 0. The lengths are equal, so there could be two indices where A and B are
mismatched (e.g., “abcde” and “xbcdy”). It could also be the case where it’s better

2See https://gitlab.com/jddantes/the-code-project/-/tree/master/
dynamic-programming
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to shift or align the strings (e.g., “xabcd” and “abcdy”) rather than trying to match
the Ai and Bi if they are not equal.

Thus, we still account for the different moves that we can take, and not just rely on simply
erasing or matching characters at the current index. If f (i, j) refers to the suffixes starting
at Ai and B j , then we can make use of the familiar Levenshtein recurrence. If Ai = B j , wecan proceed to ‘ f (i+1, j+1)’. Otherwise, we can explore the different actions:

• Match the characters. Move to ‘ f (i+1, j+1)’.
• Delete from A. Move to ‘ f (i+1, j)’.
• Delete from B. Move to ‘ f (i, j+1)’.

The difference from the plain Levenshtein formulation is thatwe know themaximumnumber
of edits that we are allowing, andwe can include it as a parameter in the recursion to limit the
search space. So let’s use a new parameter, “e”, to denote the maximum number of allowed
edits. Then from ‘ f (i, j,e)’, we move to ‘ f (i+1, j+1,e)’ if Ai = B j. Otherwise, we move to
‘ f (i+1, j+1,e−1)’, ‘ f (i+1, j,e−1)’, or ‘ f (i, j+1,e−1)’ as listed before.
This may still look like exponential time, but as the maximum number of allowed edits is
small, we end up with what’s essentially ‘O(m+ n)’ time with a reasonably small constant
factor. We can quantify this precisely by considering the more general problem where the
maximum allowed edits is k. Then the complexity of this approach is O(3k(m+n)). For this
problem, k = 3, so the constant is small.
Alternatively, you can attempt to memoize f (i, j,e) with an additional case: if the current
suffixes’ lengths differ by more than e, then we stop early and prune the search, since we
already know that their edit distance is more than e. Using memoization, the complexity
becomes O(k(m+n)).
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Problem B: C.U.P.S.

Setters: Kevin Atienza
Testers: Josh Quinto
Statement Authors: Patrick Celon
Test Data Authors: Kevin Atienza
Editorialists: Josh Quinto, Kevin Atienza

B.1 Problem Summary

You are given n craters, each crater initially either open or closed. In one move, you can flip
(open→ closed, closed→ open) the state of exactlym craters. You are tasked to find a series
of at most n moves such it results in all craters being closed or determine if it is impossible
to do this.

B.2 Solution

With n up to 80, and m bounded only by n, naive solutions that involve complete search
will result in a Time Limit Exceeded verdict, even with efficient pruning. Experienced solvers
would have the intuition to pursue a greedy solution – and they would be right!
B.2.1 Insight 1: Two-flip strategy

The first major insight needed is that you can flip any two arbitrary craters within twomoves,
while retaining the states of others. This is demonstrated by the example below.

1110111100100
Move 1 --XXAXX------
Move 2 --XX-XX-B----
Result 1110011110100

In the above example, we have n= 13 andm= 5. We flip the 5th and 9th craters by choosing
to flip them once each on the first and second move, respectively, while flipping 4 other
craters twice. By flipping the 4 others twice, we retain their original states.
In general, we can choose two craters A and B to flip once, then choose any arbitrary m−1
craters (that isn’t A and B) to flip twice. This works for any m < n (when m = n, this devolves
into a special case that’s even easier to solve – more on this later).
In the case that we have O open craters, then we can reduce the number of open craters by
exactly 2 every two moves. If O is even, then we’ll need O moves to close all craters. Since O
is at most n, then we have found a solution for even O! What about for odd O?
B.2.2 Insight 2: Odd O

With odd O, then we must first consider the parity of m. If m is even, then it is unsolvable.
This is because by flipping any even number of craters, we do not change the parity, hence
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O will always be odd – a non-zero number.
If m is odd, then flipping any m craters once will flip the parity, making O even. Then we can
solve it using the algorithm mentioned above for even O.
However, be careful in choosing the craters to flip initially – if the crater states after the initial
flip result with O = n, then it cannot be solved as we only have n− 1 flips left, as demon-
strated below.

100000 (1 means closed, and 0 means open)
Move 1 X----- (m=1)
Result 000000 (not solvable in 5 moves)

As such, ensure that there is at least one open crater chosen in the initial flip.
B.2.3 Special case: m = n

In the case where m = n, the only two cases that are solvable are when O = n or O = 0 (all
are open, or all are closed). When O = n, we flip all craters once (which is always possible
since n ≥ 1). Otherwise when O = 0, we don’t flip anything. Of course, any other case is
impossible because there is really only one possible move, which is to flip everything.
B.2.4 Alternative solution: BFS

There is an alternative solution that uses breadth-first search (BFS). We can think of a se-
quence of moves as a sequence of integers O0,O1,O2, . . . ,Ok, where Oi is the number of
open craters after the ith move. A valid sequence of moves is one that:

• begins with O0 = O, the initial number of open craters;
• ends with Ok = 0, i.e., all craters closed;
• for every i from 1 to k, it is possible to go from Oi−1 open craters to Oi open cratersby flipping exactly m craters.

The key thing to notice here is that it doesn’t really matter which Oi craters are currently
open; if there is at least one selection of Oi open craters such that it is possible to get Oi+1open craters in exactly one move, then the same is true for any selection of Oi open craters,by simply permuting the craters (and the move) properly.
Therefore, for each n and m, we can build this (undirected) graph of n nodes and up to n2

edges, and simply go backwards, i.e., find all the reachable nodes from the state with 0 open
craters, and also find the shortest path to them using BFS. We precompute the shortest paths
along with the predecessors. Then, for each test case, we simply construct the shortest path
from the precomputed stuff, or determine that it is impossible.
The advantage of this approach is that we don’t have to deal with lots of cases. For example,
the case m = n is not a special case, and also, even and odd m are handled identically. We
don’t even have to know that all nodes are solvable in at most n moves; we can just check if
the shortest path is at most n. Of course, this alternative formulation does also yield a proof

Problem B: C.U.P.S. 6



that at most n moves are needed; there are only n+1 nodes, and every shortest path only
goes through any node at most once, so therefore, any shortest path is at most n in length.3
The running time of the precomputation for a fixed (n,m) pair is linear in the size of the
graph, i.e., O(n2). Thus, the overall running time is O(n2

max ·n2
max) = O(n4

max). Afterwards,each test case can be answered in time linear in the size of the output, which is O(n2), since
the shortest path can be extracted/reconstructed in a straightforward way. (Perhaps the
trickiest part is determining which m craters to flip, but this can be done with a little bit of
arithmetic.)

3Can you also show that this bound is tight?
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Problem C: Senpai

Setters: Josh Quinto
Testers: TBA
Statement Authors: Patrick Celon
Test Data Authors: Patrick Celon, Kevin Atienza
Editorialists: Patrick Celon, Kevin Atienza

C.1 Solution

C.1.1 The formula

We need to select the functions Pi so that the following are satisfied:

Pi(0) = 0 for all i from 1 to q (1)
q

∑
i=1

(
d
dt

Pi(t)
)2

≤ g2. (2)

Furthermore, they must be selected so that the minimum t ≥ 0 that satisfies the following
inequality is minimized:

q

∑
i=1

Si(t)≤
q

∑
i=1

Pi(t) ·Wi (3)
where

Si(t) = Fi · t +Ci. (4)
We can start by simplifying the inequality: on the left side, note that Fi and Ci are all con-stants, so their summations are also constant:

q

∑
i=1

Si(t) =
q

∑
i=1

Fi(t) · t +
q

∑
i=1

Ci(t) = Fsum · t +Csum. (5)

Fsum andCsum are the sums of Fi andCi across all qualities.
Next, we recognize that the right side, ∑

q
i=1 Pi(t) ·Wi, is simply the dot product between two

vectors P(t) and W , with individual components Pi(t) and Wi respectively. In other words,
P(t) ·W is a scalar measuring the component of P(t) in the direction ofW .
Our goal is to find tmin, the minimum time t ≥ 0 such that this dot product exceeds Fsum · t+
Csum with the optimal choice of P.
Let’s now think about what the optimal choice ofP(t) should be. Wewant the dot product on
the right to grow as fast as we can. We can chooseP(t) to be any continuously differentiable
function satisfying (2). Let’s think about what (2) says. It says that, at anymoment, the instan-
taneous rate of change of our function, P′(t), has magnitude at most g, i.e., ‖P′(t)‖ ≤ g.
Think of this as the speed limit, and P(t) is the path that we’re taking in q-dimensional space.
Problem C: Senpai 8



Since we’re maximizing, it makes sense to “maximize” this speed limit as well, i.e., choose
that ‖P′(t)‖ = g always. Also, note that we’re only maximizing the component of P(t) in
the direction of W . Therefore, intuitively, it makes sense that the optimal choice is that P′(t)
should point in the same direction asW , but with magnitude exactly g. This forces P′(t) ·W to
be exactly g‖W‖, and thus, P(t) ·W = g‖W‖t .
Theorem C.1. If P(t) is chosen optimally, then P(t) ·W = g‖W‖t.

Of course, the previous argument doesn’t constitute an actual proof, since wemostly went by
intuition. Unsurprisingly though, our intuition didn’t fool us, since it can easily be translated
to a formal proof. We will show the formal proof later, though you might want to try writing
it on your own.
Now that we know what P(t) should be, we should figure out tmin next. Using (5) and Theo-rem C.1, it is simply the smallest t ≥ 0 such that

Fsum · t +Csum ≤ g‖W‖ t,

i.e., the smallest t such that
t · (g‖W‖−Fsum)≥Csum.

Now, I know you’re very tempted to divide by (g‖W‖−Fsum) at this point, but not so fast!Note that ab≥ c implies a≥ c/b only if b > 0. If b < 0, then the inequality reverses. Finally,
if b = 0, then it isn’t even valid since we’d divide by zero!
And the value “(g‖W‖−Fsum)” can be any sign!
Instead, let’s analyze it conceptually. The above is equivalent to

(g‖W‖−Fsum) t−Csum ≥ 0.

In other words, we have some line function, L(t), and we want to find the first time it “rises
above 0.” We can think about three cases, depending on the slope of L:

• If the slope of L is zero, then it is just a constant. Therefore, either no t satisfies L(t)≥
0 (and there’s no solution), or all of them do (and the minimum one is tmin = 0). But
the problem guarantees there is a solution, so it must be the second case, tmin = 0.

• If the slope of L is negative, then the largest value of L at the interval t ∈ [0,∞) occurs
at t = 0. Therefore, if there is at least one t satisfying L(t) ≥ 0 (which is guaranteed
by the problem), then L(0)≥ L(t)≥ 0, i.e., t = 0 is also valid, hence, the answermust
be tmin = 0.

• If the slope of L is positive, then the earliest time when L(t)≥ 0 is its root, L(t) = 0.
Let t ′ be this root, i.e., the unique t ′ such that L(t ′) = 0. If t ′ ≥ 0, then tmin must be t ′.
However, if t ′ < 0, then the answer must be tmin = 0.

You can also arrive at the same conclusion algebraically.
Armed with this, we now have the mathematically correct answer:

• If g‖W‖−Fsum ≤ 0 or ifCsum ≤ 0, then tmin = 0.
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• Otherwise, tmin = Csum
g‖W‖−Fsum

.

The case “g‖W‖−Fsum≤ 0” corresponds toL having negative slope, while the case “Csum≤
0” (and positive slope) corresponds to L having a negative root. Note that these are different
cases.
C.1.2 Precision issues

Unfortunately, if you implement the solution above directly, you might find yourself getting
“Wrong Answer”. This is due to precision errors; the formula

Csum
g‖W‖−Fsum

is numerically terrible!4
In particular, this happens in the case where g‖W‖ and Fsum are very close to each other. In
that case, if we subtract them, their most significant bits will cancel out, leaving the lower bits
as the new most significant bits. Therefore, we lost some bits of significance!
In general, subtraction of two nearly equal numbers suffers from a problem known as “catas-
trophic cancellation”.
To get around this, we take advantage of the fact that g, ‖W‖2 and Fsum are integers, and
that subtraction of integers doesn’t suffer from catastrophic cancellation (as long as you are
using an integer data type!). Also, assuming Fsum > 0, note that

g‖W‖−Fsum
being close to zero is basically the same as

g2 ‖W‖2−F2sum
being close to zero, but the latter is an integer, so we’d like to use the latter expression some-
how. No worries; we can just “multiply by the conjugate”:

Csum
g‖W‖−Fsum

=
Csum

g‖W‖−Fsum
· g‖W‖+Fsum

g‖W‖+Fsum
=

Csum (g‖W‖+Fsum)
g2 ‖W‖2−F2sum

.

This is a mathematically equivalent formula. However, this formula doesn’t suffer from pre-
cision issues! This is because in the numerator, we’re adding two floating point numbers.
Furthermore, the denominator is an integer, so we don’t lose any significance, as long as we
use integer data types to compute it. Note that ‖W‖2 must be computed as simply the sum
of the squares of theWi, without doing the square root, so that we stay at integers.

4C++ solutions are a bit lucky in this regard, sincedouble behaves exactly the same aslong double
in Windows. So, C++ solutions might be ok. See: https://docs.microsoft.com/en-us/cpp/
cpp/fundamental-types-cpp?view=vs-2019

Problem C: Senpai 10

https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Loss_of_significance
https://docs.microsoft.com/en-us/cpp/cpp/fundamental-types-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/fundamental-types-cpp?view=vs-2019


However, there is still one issue. The trick only works if the denominator is positive. And the
denominator can certainly be negative; although g and ‖W‖ are nonnegative, Fsum could
be a very negative number that dominates both of them, so the denominator becomes neg-
ative overall. And in this case, the addition expression “(g‖W‖+Fsum)” now becomes the
catastrophic one!
Luckily, this last issue is also easy to solve. Note that Fsum is negative, so the subtraction
expression “(g‖W‖−Fsum)” is now the numerically stable one, and so we should just use
the original formula instead!
As an alternative to this formulamanipulation, we could also use bisection to find the answer,
since the problemguarantees that the answer is between 0 and 5000. In fact, using bisection,
we can do away with division altogether, and work directly with the inequality

Fsum · t +Csum ≤ g‖W‖ t.

However, note that the special cases “g‖W‖−Fsum ≤ 0” and “Csum ≤ 0” must still be han-
dled separately. You can do that by simply checking if t = 0 already satisfies the inequality.5

C.1.3 Proof of optimality

We now wish to prove Theorem C.1.
Proof. Note that the specified bound can be achieved by choosing P(t) = W

‖W‖gt . This is a
valid choice because it is just a linear function (which is definitely continuously differentiable),
and that ∥∥P′(t)

∥∥= ∥∥∥∥ W
‖W‖

g
∥∥∥∥= ‖W‖‖W‖g = g≤ g.

However, this choice isn’t defined when ‖W‖= 0. But in that case,W is just the zero vector,
so the dot product is always 0 regardless of our choice ofP(t). Therefore, “P(t) ·W = g‖W‖t”
is still true for any P, so we can just choose P(t) to be anything.
All that remains is to show that this is optimal. Let P(t) be any function satisfying the condi-
tions of the problem. We want to show that P(t)≤ g‖W‖t .
Let

f (t) := P(t) ·W =
q

∑
i=1

Pi(t) ·Wi.

Note that f (0) = 0.
Differentiating once (which is possible since Pi is differentiable), we get

f ′(t) =
q

∑
i=1

P′i (t) ·Wi = P′(t) ·W.

5However, that doesn’t mean that this approach doesn’t suffer from some numerical issues on its own. What
can possibly go wrong with this approach?
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Since Pi is continuously differentiable, f ′ must be continuous, and hence, integrable. There-
fore, if we integrate: ∫ t

0
(P′(u) ·W )du =

∫ t

0
f ′(u)du

= f (t)− f (0)
= f (t).

However, remember that v ·w≤ ‖v‖‖w‖.6 Using this gives us the desired bound for f (t):

f (t) =
∫ t

0
(P′(u) ·W )du

≤
∫ t

0

∥∥P′(u)
∥∥‖W‖du

≤
∫ t

0
g‖W‖du

= g‖W‖
∫ t

0
du

= g‖W‖ t.

6This is called the Cauchy-Schwarz inequality.
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Problem D: Move to Remove Confidential Blunders

Setters: Kevin Atienza
Testers: Alvin Burgos
Statement Authors: JD Dantes
Test Data Authors: Josh Quinto
Editorialists: JD Dantes

D.1 Solution

To check if we can give access, we can hardcode the string rankings with their corresponding
age thresholds with a couple of ‘if-else’ statements. Another approach is to use a data struc-
ture to map a string ranking to an integer threshold (e.g., C++ ‘map’, Python ‘dict’). Just be
careful with the equalities/inequalities when writing your conditions.
Note that the title in the input is not needed, and you can even choose to not read it at all. In
fact, it might be better not to read it to minimize the risk of getting an error or something.
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Problem E: A Floor of Many Doors

Setters: Barbara David
Testers: Josh Quinto
Statement Authors: Barbara David
Test Data Authors: Kevin Atienza
Editorialists: Josh Quinto

E.1 Problem Summary

You are given a grid of doors (‘D’), empty spaces (‘.’), and walls (‘#’). You are also given the
starting (‘A’) and ending (‘B’) positions. You must find the minimum number of moves to
reach the destination while keeping open a maximum of k doors at a time or determine if it
is impossible.
Here, the following are considered moves: moving up/down/left/right one cell, opening a
closed door at an adjacent cell, and closing an open door at an adjacent cell.

E.2 Solution

Without the restriction of the doors, this seems to be a straightforward shortest path prob-
lem, one solvable by BFS. If we do consider the doors, but ignore k, thenmoving to a cell with
a closed door will cost us two moves instead of just one.
Since our edges are weighted now, this can instead be solved by the O(E logV ) variant of
Dijkstra’s Algorithm (this can be optimized further, to be discussed later).
E.2.1 Door-limited operations

If we consider the limit of k open doors at a time, then it becomes slightly harder. That is, we
must close some doors as we pass through them. This can lead to several pitfalls and naïve
strategies.
The key observation here is that if wedodecide that a certain door should be closed eventually
to open another door, then the best time to close that door is as soon as we have passed it,
since we won’t be returning to the same spot.7 Let’s consider the 1D case below. It can be
shown that 2D paths can be likewise expressed in terms of 1D strips similar to that shown
(without loss of generality).
K = 3
A..D.DDD..B

^

Let’s imagine that you are already on the 3rd door (which is open). You have 2 doors to your
left already opened. In order to open the next door, you need to have either the first or

7It should be clear that there’s no point in returning to the same spot after the first time you reach it. Proving
this rigorously can be finicky, but it’s possible. It’s also unsurprising, since it’s quite intuitive anyway.
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second door closed (you can’t close the door you are currently in). For example, if we choose
to close the first door, then a valid set of operations could be:

• Move right twice (2 moves)
• Open D1 (1 move)
• Move right twice (2 moves)
• Close D1 and open D2 (2 moves)
• Move right once (1 move)
• Open D3 (1 move)
• Move right once (1 move)
• Open D4 (1 move)
• Move right four times, reach exit (4 moves)

We have shown that if we need to close a door, then we can arbitrarily choose any of the
passed doors which are still open (except possibly the last one). That is if we have k doors
open, we can choose k−1 doors to open.
What is important here is that we don’t really need to know which door we will close, since
an open door is always available to close (except when k = 1, which is a special case – more
on this later). We only need to note that an added cost of 1 move is added in the case that
we have k doors open and we need to open an additional door.
So now, we need to keep track of the position and the number of opened doors so far,
(r,c,d). The moves can be generalized as follows:

1. Move to an open space [(r,c±1,d),(r±1,d)]—1 move.
2. d < k, move to a closed door [(r,c±1,d +1),(r±1,d +1)]—2 moves.
3. d = k, move to a closed door [(r,c±1,k),(r±1,k)]—3 moves.

This can still be solved using a shortest path on a r× c× (k+1) state graph. With the sum
of rc at most 3×105 and k at most 50, this is a valid strategy.
E.2.2 Special case: k = 1

When k = 1, however, we cannot go through two consecutive doors. This limits ourmove-set
to the following:

1. Move to an open space [(r,c±1,d),(r±1,d)]—1 move.
2. d = 0, move to a closed door [(r,c±1,0+1),(r±1,0+1)]—2 moves.
3. d = 1, on an open area, move to a closed door [(r,c±1,1),(r±1,1)]—3 moves.

Note that we can only move to a closed door from an open space. Apart from the added
restriction, this is still solvable using a shortest path algorithm on a state graph.
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E.2.3 Extended BFS

Though Dijkstra’s could pass as the shortest path algorithm, there is no guarantee. Instead,
we could make use of the fact that the move costs are integers up to 3.
Consider the BFS pseudocode below:
Qt = []
Qtplus1 = []
while Qt is non-empty:

for each state in Qt:
if state has already been visited: continue
mark state as visited
for each adjacent state:

push to Qtplus1
Qt = Qtplus1
Qtplus1 = []

That is, we assume that all moves have uniform (1) cost, and states from Qt are pushed to
Qtplus1. If we extend this to consider up to a cost of 3,8 then:
Qt = []
Qtplus1 = []
Qtplus2 = []
Qtplus3 = []
while Qt is non-empty:

for each state in Qt:
if state has already been visited: continue
mark state as visited
for each adjacent state:

if cost is 1:
push to Qtplus1

elif cost is 2:
push to Qtplus2

elif cost is 3:
push to Qtplus3

Qt = Qtplus1
Qtplus1 = Qtplus2
Qtplus2 = Qtplus3
Qtplus3 = []

This makes everything run in O(V +E), removing the log factor. This should fit well within
the time limit.

8In fact, this can be generalized for an arbitrary number of L “look-aheads”, but we have to rewrite our time
and space analysis to O(V L+E). Note that this is only practical for integer weights and relatively small L.
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Problem F: One Great Grater

Setters: JD Dantes
Testers: TBA
Statement Authors: JD Dantes
Test Data Authors: Kevin Atienza
Editorialists: Kevin Atienza

F.1 Solution

While walking, we can write the complete current “state” of the walk using three numbers:
(i, j,d) where (i, j) denotes the current location and d ∈ {U,D,L,R} denotes the current
direction. We will count rows or columns starting from 1, so (1,1) represents the top-left
corner.
We can also create “dummy” states, corresponding to walking into the wall segments, by in-
troducing extra cells at the borders of the grid, and then declaring that these dummy states
don’t have successors. For example, (2,0,L) corresponds to walking into the second left
wall segment from the top, (0,5,U) corresponds to walking into the fifth top wall segment
from the left, and so on.
Each state (i, j,d) has a unique successor (except for the dummy border states), which is
clear from the statement. What’s not as clear is the fact that each state also has a unique
predecessor (if it exists). It can be shown easily: Suppose there are two different states that
go to the same location (i, j). Then these two source statesmust have different locations and
different directions. But then, the color of (i, j) determines the new direction in a one-to-one
fashion (since turning left, turning right, or not turning at all is a one-to-one correspondence
between directions), so the new directions must be different. Thus, two distinct states going
to the same location yield different directions, and hence different states. (And of course,
two distinct states going to different locations yield different states!)
And actually, this unique predecessor can easily be computed. Just undo the turning caused
by the current cell (if ever), and then undo the walk! So actually, all states (including the
dummy states we made earlier) have a predecessor, if we introduce new dummy states cor-
responding to starting from a wall segment. For example, (2,0,R) corresponds to starting
from the second left wall segment from the top, etc.
Thus, if we consider the graph of all states (i, j,d), then we find that there can never be any
branching, and so we find that the only possible components are cycles and paths. Further-
more, the paths can only start and end at a wall segment, since these are the only states that
don’t have either a predecessor or successor!
Now, what does changing the color of some cell (i, j) do to this graph? Well, all it does is it
modifies the successors of (i, j,d) for all states starting at this cell. And there are only four of
them. Usually, it just involves “tying” two distinct paths together. For example, in the simplest
case, to get to the highlighted wall segment in the following:
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we replace the “intersection” of their paths as follows:

Of course, you can’t simply check all possibilities, since that could take quite a long time.
Consider this example:
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Note that the downward path from S is very long and intersects a lot with the path towards
the highlighted wall segment. Hence, if we try all possibilities, this will take a very long time—
actually up to O((rc)2)—and will not pass the time limit.
Instead, we need to find a way to compute the resulting path after modifying some cell,
without actually doing the full walk every time. First, note that it only ever makes sense to
modify a cell that belongs to some path from S in the initial grid. (Why?) Thus, we can simply
compute all of those reachable cells, and for each of them, take note of its “initial direction”,
i.e., the direction during the first time we reach that cell.
Then, for each such white cell (i, j) with initial direction d, let’s consider what happens if
we change that cell into either red or blue. Both colors are processed similarly, so let’s just
consider one of them, say blue. Now, since the cell is blue, we will now turn right instead of
going forward. This will take us to the new state (i, j,right(d)). We now want to figure out
where this new state will end up in. But we can easily do this precomputation, since we know
that the original state graph has a quite simple shape! Thus, we can obtain the eventual state
with a simple lookup! Let’s look at the possibilities:

• The path from (i, j,right(d)) never revisits cell (i, j). In this case, it cannot end up
in a loop, and so the only possible outcome is that it ends up in a wall segment. Then
we’re done; we add this wall segment to our output!

• The path from (i, j,right(d)) revisits cell (i, j). Let (i, j,d′) be the first state in the
walk that revisits cell (i, j). Then in that case, since we modified the color of (i, j), we
again teleport to the new state (i, j,right(d′)). And then, we repeat the procedure.
After doing this repeatedly, either we end up in awall segment, or we end up repeating
some state at cell (i, j), in which case, we can stop the simulation since we must have
already ended up on a loop!

Note that if we can compute the correct case in O(1) (by preprocessing the graph), then this
only takes O(1) time, since there are at most 4 states in a cell!
Therefore, we can compute the result of changing each cell in O(1). Since there are only
O(2rc) = O(rc) possible changes, the overall algorithm runs in O(rc)!
F.1.1 The Preprocessing

Wemust preprocess the graph of states (i, j,d) so that we can easily compute the following:
• The state corresponding to the first time it revisits cell (i, j), if it exists.
• The ultimate state, if it eventually ends up at a wall segment.

Let’s denote this state as follow(i, j,d).
After computing the graph (which has 4(rc+ r + c) nodes), we can preprocess each path
and cycle separately.

• For each path, collect all the distinct cells passed through that path. Then, for each
such cell (i, j), collect the sequence of directions (d1, . . . ,dk) corresponding to the
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states visiting that cell, in order of visitation. Then we determine that
follow(i, j,d1) = (i, j,d2)

follow(i, j,d2) = (i, j,d3)

follow(i, j,d3) = (i, j,d4)

...

follow(i, j,dk−1) = (i, j,dk),

and follow(i, j,dk) is the wall segment at the end of this path.
• A cycle is handled similarly, except that this time, follow(i, j,dk) = (i, j,d1).

Each path and cycle is processed in time linear in the size of that path/cycle, and so the overall
complexity is linear in the size of the graph, which is O(4rc) = O(rc)!
F.1.2 Gotchas

This problem is quite tricky. There are several ideas that sound reasonable but are actually
wrong. Here are a couple.
Only process a cell on the initial visit. We must only process each cell for the first time
it is visited, not for every time it is visited. Consider the following example, where the initial
direction is “down”:

Note that the center cell is visited twice, the first time with direction R, and the second time
with direction U. We must only process the direction R; if we wrongly process the direction
U, say by going left after it, then we would arrive at the highlighted wall segment, which is
actually unreachable.
Visiting a cell multiple times. It is tempting to guess that we only need the “single inter-
section” case, i.e., the casewhere themodified cell is only passed through once. It is incorrect!
For example, it will be incorrect in cases like this:
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If we make the middle cell blue, then we get the following:

which ends up at the highlighted wall segment. Note that the modified cell was traversed
twice!
It is not even enough to assume it only passes through themodified cell at most twice. Here’s
the smallest counterexample I could find:

If we modify the second white cell as follows:

then the highlighted wall segment can be reached. Note that the modified cell was passed
through three times!
Curiously, it turns out that there are no cases where the path has to pass through the modi-
fied cell four times. Well, there are such cases, but you can show that you reach no new wall
segments. The proof is actually quite clever, but in any case, the solution shouldn’t depend
on it. (Finally, of course there are no cases where the path passes through the modified cell
more than four times, since then at least one state would repeat.)
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Problem G: Generic Spy Movies

Setters: Patrick Celon
Testers: Kevin Atienza
Statement Authors: Patrick Celon
Test Data Authors: Josh Quinto
Editorialists: Patrick Celon

G.1 Solution

If there are a actors available for casting g guests per episode, there are always (a
g

) possible
castings. There are many ways to enumerate such combinations. However the problem
wants to find an ordering such that the change between two combinations is minimal, that
is, only one element is changed. This corresponds to the ‘one leaves, one enters’ rule.
The problem also gives you a set starting point, but since this is simply an enumeration of
combinations, we can reorder the list of a actors such that these first g guests appear lexico-
graphically first! In short, the given initial sequence doesn’t matter at all except for displaying
who is subbed in or out.
We can do this enumeration in many ways.
G.1.1 Binary Reflected Gray Coding

Since we are limiting the changes at each step to be minimal, we can do something similar
to Gray coding, but slightly different, since we’re enumerating combinations.
One of the easiest ways to generate gray codes is to start at theminimal sequence, (0,1) and
build from there by creating a reflected second sequence, while adding 0 to the first, and 1
to the second, like so:

(0,1)
(00,10,11,01)

(000,100,110,010,011,111,101,001)
... and so forth.

This way generates a sequence in which exactly 1 position changes/flips at each step. How-
ever, in our case, we have to change at exactly 2 places - one inwhich there is a 1, and another
position in which there is a 0. Furthermore, we need to have exactly g 1’s at each step. This
can be solved by modifying the reflection a little bit: First, we generate a valid combination
sequence for a−1 actors and g−1 guests, and a−1 actors and g guests. We can see that
both of these sequences sum up to the (a

g

) required. We can then append a 1 to the first one
and add 0 to the second, while also reflecting second sequence, like normal reflected gray
codes.
Starting from the sequences (0) and (1), the list can then be generated:

a = 1 : (0) (1)
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a = 2 : (00) (01,10) (11)
a = 3 : (000) (001,100,010) (011,101,110) (111)

... and so forth.
This looks a lot like Pascal’s Triangle, especially if we write it in the following form:

()

(0) (1)

(00) (01,10) (11)

(000) (001,100,010) (011,101,110) (111)

This also illustrates that the number of (n
k

) combinations possible and the (n−1
k−1

)
+
(n−1

k

)
expression that we are using right now are equal.
Again, note that the right parent is reflected, while the left parent is not.
The reason this works is the following.
Theorem G.1. The construction has the following properties:

• For 0 < g≤ a, the first terms of the enumeration for (a,g−1) and (a,g) differ in exactly
one position.

• For 0 < g≤ a, the last terms of the enumeration for (a,g−1) and (a,g) differ in exactly
one position.

• For 0 < g < a, the first and last terms of the enumeration for (a,g) differ in exactly one
position.

This is provable by a simple induction, which we’ll leave you to figure out. And the last item
in particular shows that the enumeration is cyclic.
Since we can generate the list, we only need to add the changes to that list like so:
combi_list = new empty list // list of all the g−combinations

def gen_comb(a, g, is_reflected, suffix):
if g == 0:

combi_list.add(string(a, ’0’) + suffix) // all zeroes
return

elif g == a:
combi_list.add(string(a, ’1’) + suffix) // all ones
return

if not is_reflected:
// first part of the list, add ’0’ to the suffix as you work your way down
gen_comb(a-1, g-1, false, ’1’+suffix)

// second part of the list, add ’1’ to the suffix as you work your way down
gen_comb(a-1, g, true, ’0’+suffix)
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else:
// reversed, so flip
gen_comb(a-1, g, false, ’0’+suffix)
gen_comb(a-1, g-1, true, ’1’+suffix)

If we run the function above, we generate the sequences described before. Furthermore, we
notice that we start at the generation where all the 1’s are at the rightmost, and end where
they are shifted by 1 to the left by one step. In other words:
Theorem G.2. For 0≤ g < a,

• the first string given by gen_comb(a, g) is the string 000..0︸ ︷︷ ︸
a−g

11..1︸ ︷︷ ︸
g

.

• the last string given by gen_comb(a, g) is the string 00..0︸ ︷︷ ︸
a−g−1

11..1︸ ︷︷ ︸
g

0.

Again, it can easily be proven by induction. Note that this also shows that the enumeration
is cyclic.
From the sequence of combinations, you could easily work out the transitions, i.e., the re-
moved and added elements between consecutive combinations. However, that would be
too slow,9 so instead, we’d like to generate the transitions directly. But since we have a gen-
eral idea of the forms of the first and last element of each sequence, we can then determine
the transition between two sequences. The pseudocode for generating the transitions is then:
change_list = new empty list // list of transitions between the g−combinations

def gen_changes(a, g, is_reflected):
if g == 0 or g == a:

return // no transitions as the sequence is a singleton

if not is_reflected:
// generate transition list for left parent
gen_changes(a-1, g-1, false)

// add transition between parents to change_list
if g == a-1: // right parent is all ones

change_list.add(a, a-1)
else:

change_list.add(a, a-g-1)

// generate transition list for right parent
gen_changes(a-1, g, true)

else:
// generate transition list for left parent (reversed)
gen_changes(a-1, g, false)

// add transition between parents to change_list
if g == a-1: // left parent is all ones

9unless you use tricks like bitmasks.
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change_list.add(a-1, a)
else:

change_list.add(a-g-1, a)

// generate transition list for right parent (reversed)
gen_changes(a-1, g-1, true)

Of course, this solution enumerates all (a
g

) combinations, but the problem only asks for the
first n. Enumerating all (a

g

) combinations and then removing all but the first n would be too
slow, since (a

g

) is usually very large. Thus, we need to modify the code above to stop as soon
as n combinations (or equivalently, n−1 changes) are already obtained. This is accomplished
by adding lines throughout the code like the following:

if change_list.size() >= n - 1: return

G.1.2 Backtracking

A more straightforward way to generate the solutions is to just use backtracking the same
way you generate all g-combinations of a set of a numbers. Following the formula(

a−1
g−1

)
+

(
a−1

g

)
=

(
a
g

)
,

we keep track of two things:
• The list of people in the cast, in_cast.
• The list of people outside the cast, out_cast.

Wedefine a functiongenerate(in_cast, out_cast) that generates all the transitions
needed to traverse the cast. This function call represents the sequence of all g-combinations
froma elements, whereg isin_cast.length anda isin_cast.length + out_cast

.length, assuming that the initial combination is in_cast.
We can implement generate(in_cast, out_cast) as follows:

1. Remove the last element in out_cast, and let it be out_last.
2. Recursively call generate(in_cast, out_cast). (This corresponds to (a−1

g

).)
3. Remove the last element in in_cast, and let it be in_last.
4. Place in_last in out_cast.
5. Record the transition (in_last is replaced by out_last).
6. Recursively call generate(in_cast, out_cast). (This corresponds to (a−1

g−1

).)
7. Place out_last in in_cast.

The first recursive call corresponds to all theg-combinations not containingout_last (there
are (a−1

g

) of those), while the second corresponds to the ones containing it (there are (a−1
g−1

)
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of those). Before the second call, we simply swapout_lastwith anymember of the current
in_cast. Any one will do, so we just arbitrarily choose the last one in the list.
This corresponds to the following pseudocode:
change_list = new empty list // list of all the g−combinations

def generate(in_cast, out_cast):
if in_cast.empty() or out_cast.empty():

return // this corresponds to g == 0 or g == a. hence, no transitions

// last element of out_cast
out_last = out_cast.pop_back()

// recurse for 1st parent
generate(in_cast, out_cast)

// last element of in_cast
in_last = in_cast.pop_back()

// swap in_last with out_last
out_cast.push_back(in_last)
// ... and record the transition
change_list.add(in_last, out_last)

// recurse for 2nd parent
generate(in_cast, out_cast)

// put out_last back
in_cast.push_back(out_last)

One difference of this approach from the first one is that the sequence this generates is not
necessarily cyclic (i.e., it cannot go back to the first generation by only swapping 1 element).
Again, this enumerates all combinations. Add the appropriate return lines as soon as you
obtain the required number of combinations.

G.2 Editorial

Someenumerations of combinations are hard to compute, like theBeckett-Gray code, wherein
the one who is going out should be the one who has been staying the longest.
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Problem H: Maggie and Dana’s Mass Supper

Setters: Kevin Atienza
Testers: TBA
Statement Authors: Patrick Celon
Test Data Authors: Kevin Atienza
Editorialists: Kevin Atienza

H.1 Solution

Let’s denote the cell at the ith row and jth column as (i, j). We start counting at 0, so the top-
left and bottom-right cells are (0,0) and (w−1, `−1), respectively. Also, let p(i, j) be the
number of paths from cell (0,0) to the cell (i, j). Then the answer is simply p(w−1, `−1).
Of course, we can compute p(i, j) using the familiar recurrence p(i, j) = p(i, j−1)+ p(i−
1, j), with the base case p(0,0) = 1, and p(i, j) = 0 for every blocked cell or cell outside
the grid. However, this takes O(` ·w) time, so it will not pass the time limit. We need to find
a faster way.
H.1.1 The special cells

Clearly, we can’t compute all p(i, j). The number of empty cells themselves are also O(`w).
At best, we can compute p(i, j) for just a subset of the cells.
Let’s consider computing p(i, j). If there were no blocked cells, then the answer is easily
seen to be (i+ j

i

). Let’s denote this value as c(i, j). Note that c(i, j) is easy to compute; we
can just precompute factorials and inverse factorials (modulo 104857601) up to `+w.
However, p(i, j) is in general less than c(i, j). But note that if we can compute by howmuch,
exactly, then we can compute p(i, j) as follows:

p(i, j) = c(i, j)− (no. of paths to (i, j) passing through some blocked cell).
So let’s try to compute the number of paths to (i, j) passing through at least one blocked cell.
Let’s consider the first blocked cell in this path. This cell is either (i′+1, i′) or (i′, i′+ `−w+
1), since these are the only possible first blocked cell. But note that to reach (i′+1, i′), the
previous cell must have been the cell (i′, i′), since (i′+1, i′) is the first blocked cell. Similarly,
to reach (i′, i′+ `−w+1), the previous cell must have been (i′, i′+ `−w). Therefore,

• The number of paths to (i, j) whose first blocked cell is (i′+ 1, i′) can be computed
as follows:

p(i′, i′) · c(i− (i′+1), j− i′),

since the path towards (i′+1, i′)must end up at cell (i′, i′) andmust not pass through
any blocked cell (there are p(i′, i′) such paths), and the rest of the path, i.e., from
(i′+ 1, i′) to (i, j), can be any path, regardless of any blocked cells in the way (there
are c(i− (i′+1), j− i′) such paths).
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• Similarly, the number of paths to (i, j) whose first blocked cell is (i′, i′+ `−w+ 1)
can be computed as

p(i′, i′+ `−w) · c(i− i′, j− (i′+ `−w+1)).

Therefore, we can compute p(i, j) as follows:
p(i, j) = c(i, j)

−∑
i′

p(i′, i′) · c(i− (i′+1), j− i′)

−∑
i′

p(i′, i′+ `−w) · c(i− i′, j− (i′+ `−w+1)).

But note that these recurrences only require us to compute p(i, j) of the form (i, i) and
(i+ `−w) (i.e., the cells adjacent to blocked cells), and there are only 2w such cells! Thus,
we can compute p(w−1, `−1) without computing all p(i, j); we only need 2w of them.
The recurrence is O(w) in length, so this algorithm is O(w2) which is still too slow. But
this should feel like progress, since the number of states this time is now O(w), which is
seemingly more manageable. From this point on, we start seeking faster ways of computing
them.
H.1.2 A better representation

Since we’re now only considering special cells (i, j), let’s introduce some new notation. Let:
pL(i) := p(i, i)
pR(i) := p(i, i+ `−w)
uL(i) := c(i, i)
uR(i) := c(i, i+ `−w)
cL(i) := c(i−1, i)
cR(i) := c(i−1, i+ `−w).

We can now adapt the recurrences above using the new notation as follows:

pL(i) = uL(i)−
i

∑
j=0

pL( j) · cL(i− j)−
i−(`−w)

∑
j=0

pR( j) · cR(i− j− (`−w))

pR(i) = uR(i)−
i

∑
j=0

pL( j) · cR(i− j)−
i

∑
j=0

pR( j) · cL(i− j).

But now, writing the formulas this way, we now see what they really are: they are actually a
bunch of convolutions. And that likely means that the Discrete Fourier Transform (DFT) is at
play!
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So now, let’s use some generating function notation, and hope that we can massage these
equations into something useful. Let’s use:

PL(x) = ∑
i≥0

pL(i)xi PR(x) = ∑
i≥0

pR(i)xi

UL(x) = ∑
i≥0

uL(i)xi UR(x) = ∑
i≥0

uR(i)xi

CL(x) = ∑
i≥0

cL(i)xi CR(x) = ∑
i≥0

cR(i)xi.

In other words, we use capital letters to denote the generating function, and small letters for
the coefficients. We can now use the standard generating function trick: Multiply both sides
by xi, then sum across i, and see where it goes! Let’s start with pR:

pR(i) = uR(i)−
i

∑
j=0

pL( j)cR(i− j)−
i

∑
j=0

pR( j)cL(i− j)

∑
i≥0

(pR(i))xi = ∑
i≥0

(
uR(i)−

i

∑
j=0

pL( j)cR(i− j)−
i

∑
j=0

pR( j)cL(i− j)

)
xi

∑
i≥0

pR(i)xi = ∑
i≥0

uR(i)xi−∑
i≥0

i

∑
j=0

pL( j)cR(i− j)xi−∑
i≥0

i

∑
j=0

pR( j)cL(i− j)xi

PR(x) =UR(x)−PL(x)CR(x)−PR(x)CL(x),

where in the last step, we note that multiplying two generating functions corresponds to
convolving the coefficients. Similarly, for pL, we get:

PL(x) =UL(x)−PL(x)CL(x)− x`−wPR(x)CR(x),

where the x`−w factor is needed to ensure that the indices are aligned.
Thus, we get a system of two equations, where the “knowns” are UL, UR, CL and CR (since
they are easy to compute), and the “unknowns” are PL and PR (since they are the ones we
are computing via the DP above). In fact, the two equations are linear in PL and PR!
Also, note that the answer is pR(w− 1), and so we need to solve for the coefficients of
PR(x). So we need to “eliminate” PL somehow. So, let’s write the formulas above in a more
“standard” form:

(1+CL(x))PL(x)+ x`−wCR(x)PR(x) =UL(x)
CR(x)PL(x)+(1+CL(x))PR(x) =UR(x)

Since we want to eliminate PL, we can scale the equations appropriately and then subtract,just like we usually do with linear equations. Thus, we multiply the first with CR(x) and the
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second with 1+CL(x), and then subtract:
CR(x)(1+CL(x)) PL(x) + x`−wCR(x)2 PR(x) =UL(x)CR(x)

CR(x)(1+CL(x)) PL(x) +(1+CL(x))2 PR(x) =UR(x)(1+CL(x))(
(1+CL(x))2− x`−wCR(x)2

)
· PR(x) =UR(x)(1+CL(x))−UL(x)CR(x)

PR(x) =
UR(x)(1+CL(x))−UL(x)CR(x)

(1+CL(x))2− x`−wCR(x)2 .

H.1.3 An FFT-based solution

At this point, it is now actually possible to arrive at a solution.
Note that this is a formula involving only the “known” onesUL,UR,CL,CR. We have success-
fully eliminated PL! Thus, if we can compute the the first w terms of the generating function
to the right, then we can compute the answer.
Thus, we can simply keep the first w terms of every generating function on the right, and
they become “polynomials” instead of generating functions.
But then, all operations on the right-hand side become only polynomial multiplications and
divisions, and so can be computed using the fast Fourier transform (FFT) in O(w logw)!10
The slowest part is actually computing the polynomial division (which also runs inO(w logw)
but has a high constant factor), but thankfully, there is only one such operation.
Thus, the answer can be computed in O(w logw) time!
Note that the modulus, 104857601, is 222 · 25 + 1, and so we can easily compute up to
500000 terms using a number-theoretic version of the FFT.
H.1.4 A formula-based solution

We can actually derive an explicit formula for the answer by continuing to manipulate our
generating function expression for PR(x) above. The key is to notice that the generating
functions UL,UR,CL,CR actually have expressions in terms of the generating function of
the Catalan numbers. Recall that the Catalan number c(n)11 is defined as the number of
paths from (0,0) to (n,n) that stays “below the diagonal”, and we have an explicit formula
for them:

c(n) =
1

n+1

(
2n
n

)
.

Also, recall that their generating function is given by
C(x) := ∑

n≥0
c(n)xn =

1−
√

1−4x
2x

.

Wewill not prove these since these are standard results found in almost any generatingfunc-
tionology book that’s written by a person with surname Wilf.

10By “division”, we mean multiplication by the inverse generating function.
11This is not the standard notation, but we’re using “c(n)” for consistency with our earlier notation.
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Theorem H.1. For a fixed k ≥ 0, the generating function of the c(i, i+ k)s is given by

Ck(x) := ∑
i≥0

c(i, i+ k)xi =
C(x)k
√

1−4x
,

whereC(x) is the generating function of the Catalan numbers.
Proof. We will prove the case k = 0 algebraically, and then the rest combinatorially. For
k = 0, note that c(i, i) =

(2i
i

), which is very close to the Catalan number formula. In fact,
using the d/dx trick, we can show that:

C(x) = ∑
i≥0

1
i+1

(
2i
i

)
xi

xC(x) = ∑
i≥0

1
i+1

(
2i
i

)
xi+1

d
dx

(xC(x)) =
d
dx ∑

i≥0

1
i+1

(
2i
i

)
xi+1

d
dx

(
1−
√

1−4x
2

)
= ∑

i≥0

(
2i
i

)
xi

The right side is exactly what we want—C0(x)—while the left side can easily be simplified to
1√

1−4x
. This proves the theorem for the case k = 0.

For k > 0, we can prove the formula combinatorially.12 Consider the path from (0,0) to
(i, i+ k). The second coordinate starts out equal to the first coordinate, but eventually be-
comes greater than it by exactly k. For each j from 1 to k, there will be a first location in
the path where the second coordinate becomes greater than k by exactly j. We can thus
partition the path into k+1 parts:

• The 1st part starts from the beginning until the point where the second coordinate
first becomes greater than the first coordinate by 1.

• The 2nd part starts from where it left off until the point where the second coordinate
first becomes greater than the first coordinate by 2.

• The 3rd part starts from where it left off until the point where the second coordinate
first becomes greater than the first coordinate by 3.

• ...
• The kth part starts from where it left off until the point where the second coordinate
first becomes greater than the first coordinate by k.

• The (k+1)th part starts from where it left off until the end of the path.
12You can also do it algebraically if you want.
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Consider some part j≤ k. The coordinates start out differing by j−1 and endswhen the dif-
ference becomes j. However, all throughout the path, the difference never becomes j until
the end (by the definition of the jth part). Therefore, it is a path from some point (t, t+ j−1)
to some point (t ′, t ′+ j) such that every intermediate point never crosses the “diagonal”. But
this is precisely what the Catalan number counts!
So, if we denote the sizes of the parts by 2i1 + 1,2i2 + 1, . . . ,2ik + 1,2ik+1 (it should be
easy to see that the first k parts have odd sizes, and the last part even), then the number of
possibilities for the jth part, for j ≤ k, is exactly c(i j), the i jth Catalan number. Finally, the
last part is unrestricted, so there are exactly c(ik+1, ik+1) such paths. We therefore have the
following formula:

c(i, i+ k) = ∑
i1+i2+...+ik+1=i

c(i1) · c(i2) · c(i3) · · ·c(ik) · c(ik+1, ik+1).

Using the “multiply by xi then sum across i” trick again, we get the result:

Ck(x) =C(x) ·C(x) ·C(x) · · ·C(x)︸ ︷︷ ︸
k

·C0(x) =
C(x)k
√

1−4x
.

In particular, the theorem shows that:
UL(x) =

1√
1−4x

UR(x) =
C(x)`−w
√

1−4x

CL(x) =
xC(x)√
1−4x

CR(x) =
xC(x)`−w+1
√

1−4x
.

Therefore, if we substitute these to our formula for PR(x) and simplify, we will get some
complicated formula in terms of the Catalan generating function. But before we do that, let’s
first derive a nice expression for 1+CL(x), since it is what appears in the formula. We just
have to note that√1−4x = 1−2xC(x). Then:

1+CL(x) = 1+
xC(x)√
1−4x

= 1+
xC(x)

1−2xC(x)

=
1− xC(x)
1−2xC(x)

=
1− xC(x)√

1−4x
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Then we also note13 that 1− xC(x) = 1
C(x) to obtain:

1+CL(x) =
1/C(x)√

1−4x
.

We can now proceed with PR(x):
PR(x) =

UR(x)(1+CL(x))−UL(x)CR(x)
(1+CL(x))2− x`−wCR(x)2

=

C(x)`−w
√

1−4x
· 1/C(x)√

1−4x
− 1√

1−4x
· xC(x)`−w+1
√

1−4x(
1/C(x)√

1−4x

)2
− x`−w

(
xC(x)`−w+1
√

1−4x

)2

=
C(x)`−w · (1/C(x))− xC(x)`−w+1

(1/C(x))2− x`−w
(
xC(x)`−w+1

)2

=
C(x)`−w−1− xC(x)`−w+1

(C(x))−2− x`−w+2 ·C(x)2(`−w+1)

=
C(x)`−w−1(1− xC(x)2)

(C(x))−2− x`−w+2 ·C(x)2(`−w+1)
·C(x)2

C(x)2

=
C(x)`−w+1(1− xC(x)2)

1− x`−w+2 ·C(x)2(`−w+2)
.

At this point, we recognize (with a bit of algebra) that1−xC(x)2 =C(x)
√

1−4x, but, judging
from Theorem H.1, we might prefer the√1−4x to be at the denominator, so we’ll write it
as (1−4x)C(x)√

1−4x
, to get:

PR(x) =
(1−4x)C(x)`−w+2

√
1−4x

· 1
1−C(x)2(`−w+2) · x`−w+2

.

At this point comes the weird part: we expand the rightmost fraction using the series
1

1− t
= ∑

j≥0
t j.

This gives us an expression that, while looks complicated, is actually a sum of terms of the
13using the fundamental relation for the Catalan generating function: C(x) = 1+ xC(x)2.
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form given in Theorem H.1.

PR(x) =
(1−4x)C(x)`−w+2

√
1−4x

·∑
j≥0

(
C(x)2(`−w+2) · x`−w+2

) j

= (1−4x) ∑
j≥0

C(x)(`−w+2)(2 j+1)
√

1−4x
· x(`−w+2) j

= (1−4x) ∑
j≥0

C(`−w+2)(2 j+1)(x) · x(`−w+2) j

= ∑
j≥0

C(`−w+2)(2 j+1)(x) · x(`−w+2) j

−4 ∑
j≥0

C(`−w+2)(2 j+1)(x) · x(`−w+2) j+1.

We’re almost there! At this point, note that the answer we’re looking for is the (w− 1)th
term of PR(x), which we can obtain as the sum of the (w−1)th terms of all the summands.
But each of the summands is just Ck(x) with some offset power xu, hence, we can obtain
the desired coefficients easily. Using the notation “[xu]something” as the uth coefficient of
“something”, we get the answer as:

pR(w−1) = [xw−1]PR(x)

= ∑
j≥0

[xw−1]C(`−w+2)(2 j+1)(x) · x(`−w+2) j

−4 ∑
j≥0

[xw−1]C(`−w+2)(2 j+1)(x) · x(`−w+2) j+1

= ∑
j≥0

[xw−1−(`−w+2) j]C(`−w+2)(2 j+1)(x)

−4 ∑
j≥0

[xw−2−(`−w+2) j]C(`−w+2)(2 j+1)(x)

= ∑
j≥0

c(w−1− (`−w+2) j, `+1+(`−w+2) j)

−4 ∑
j≥0

c(w−2− (`−w+2) j, `+(`−w+2) j)

This is great, since each c(i, j) is a term that is easy to compute if we precompute factorials!
Using this formula, we can compute the answer in O(`+w) time!14
Stating it in terms of binomial coefficients, we get the following equivalent formula:

answer= ∑
j≥0

(
`+w

w−1− (`−w+2) j

)
−4 ∑

j≥0

(
`+w−2

w−2− (`−w+2) j

)
.

Can you show how to use this formula to find a O(w)-time solution?
14The formula itself is only O

( w
`−w+2

) terms long. The running time is actually dominated by the factorial
precomputation.
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H.2 Editorial

This is my favorite problem in this round. It is simple to state, but there are several (interest-
ing) insights needed to get a full solution. In fact, it’s so natural to state that, although I came
up this problem on my own, I would not be surprised if it has already appeared elsewhere.
Admittedly, this is more effective as a problemwhen actually joining the contest onsite, with-
out internet access, because otherwise, searching stuff in OEIS would likely give a lot of hints
towards the solution.
The FFT approach is probably your best bet if you wanted to solve this problem in a time-
limited environment, since the rest of the derivation involves some heavy-duty combina-
torics.
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Problem I: Glory to Algotzka

Setters: Kevin Atienza
Testers: TBA
Statement Authors: Patrick Celon
Test Data Authors: Kevin Atienza
Editorialists: Kevin Atienza

I.1 Solution

Let us call a node marked C and S as a C-node and an S-node, respectively.
Note that answering each query in O(n) is too slow, since there are too many queries. We
must find a way to preprocess the tree so that the queries can be answered more quickly.
The solution rests on a crucial insight, which we can state as follows:
Theorem I.1. Fix the node i and the subtree size t , and let cmin and cmax be, respectively, the
minimum and maximum number of C-nodes among all subtrees of size t rooted at node i.
Then any integer c in [cmin,cmax] is obtainable! In other words, for every c ∈ [cmin,cmax], thereis a subtree of size t rooted at i with exactly c C-nodes and t− c S-nodes.
This is very convenient, since if we can precompute all cmin and cmax for every pair (i, t), thenevery query can then be answered in O(1)!
The proof is quite elegant.
Proof. Let Tmin and Tmax be trees with exactly cmin and cmax C-nodes (respectively) of size t
rooted at node i.
Note that we can “transform” Tmin into Tmax by changing one node at a time, since they
are both trees rooted at node i. For example, starting at T := Tmin, we can just repeatedly
replace a leaf of T not contained in Tmax with a leaf in Tmax not contained in the current T .
The mentioned leaves should always exist, otherwise Tmax would be a subset of T (or vice
versa), which is impossible if they have the same size and are unequal.
However, note that if we replace nodes one by one this way, then the number of C-nodes
can only change by−1, 0 or+1. Furthermore, we start at cmin and end at cmax. Therefore,every integer c along the way, from cmin to cmax, is encountered at least once!
I.1.1 Computing the extremes

Wewould now like to compute cmin(i, t) and cmax(i, t) for every node i andevery t ∈ [0,size(i)].
Note that cmax(i, t) = t− smin(i, t), so computing cmax is easily reduced to computing smin,which can be computed analogously to cmin. Therefore, we are really only looking for onekind of procedure, and we can focus on cmin(i, t) without loss of generality.
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A straightforward solution would be to compute cmin(i, t) via DP, since cmin(i, t) dependson the values of cmin for the children nodes of i. For example, suppose i had two children i1and i2. Then we have cmin(i,0) = 0, and for t > 0, we have
cmin(i, t) = min

0≤t1≤size(i1)
0≤t2≤size(i2)

t1+t2+1=t

(cmin(i1, t1)+ cmin(i2, t2)+ [i is a C-node]),

or, in terms of just one iterator, say t1 (and using t2 = t−1− t1),
cmin(i, t) = min

0≤u≤size(i1)
0≤t−1−u≤size(i2)

(cmin(i1,u)+ cmin(i2, t−1−u)+ [i is a C-node]).

In general, for a node i with r(i) subtrees i1, . . . , ir(i), let cmin(i, t,k) be value of cmin whileonly considering the first k subtrees of i. Then you can easily find a recurrence for cmin(i, t,k)similar to the above, e.g.,
cmin(i, t,k) = min

0≤u≤size(ik)
1≤t−u≤size(i,k−1)

(cmin(ik,u)+ cmin(i, t−u,k−1))

where size(i,k) is the size of the subtree rooted at iwhile only considering the first k children.
This also has a simple recurrence:

size(i,k) = size(i,k−1)+ size(ik).

And we have the base cases:
cmin(i,0,k) = 0
cmin(i,1,0) = [i is a C-node]

size(i,0) = 1.

We can now compute size(i) and cmin(i, t) as simply size(i,r(i)) and cmin(i, t,r(i)), respec-tively. After doing this (and the same thing for smin), we can now answer a query (i,c,s): the
answer is COMPROMISED if and only if all of the following are true:

c+ s≤ size(i)
c≥ cmin(i,c+ s)
s≥ smin(i,c+ s).

Thus, each query can be answered in O(1)! But how about the precomputation step? Well,
there are up toO(n2) triples (i, t,k), and for each such triple, cmin(i, t,k) is computed with a
loop of sizeO(n). Thus, the complexity isO(n3), which doesn’t seem enough for n = 10000.
But if you look very very carefully, this DP is actually really O(n2)! The proof is not trivial. I
usually call this DP pattern the “tree convolution DP”, and a proof can be found in this docu-
ment I wrote.15 The gist is that we can show the following:

15https://drive.google.com/open?id=1nhL63QcjUiRm1pGGmzi1QHceKAGeBsRY
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Theorem I.2. For a fixed i, the complexity of computing cmin(i, t,k) for all 0 ≤ k ≤ r(i) and
0≤ t ≤ size(i,k), assuming the cmin values have been computed for i’s children, is

O

(
size(i)2−

k

∑
j=1

size(i j)
2

)
.

And so, if we sum up all these complexities, we get some telescoping sum that results in

O

(
size(root)2 +

n

∑
i=1

size(i)

)
= O(n2).

So the preprocessing step actually runs in O(n2), which is enough to pass the time limit! The
overall solution is O(n2 +q).

I.2 Editorial

Have you played “Papers, Please” yet? You should!
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Problem J: A Cold Macchiato

Setters: Josh Quinto, JD Dantes, Kevin Atienza
Testers: Patrick Celon
Statement Authors: JD Dantes
Test Data Authors: Kevin Atienza
Editorialists: Kevin Atienza

J.1 Solution

J.1.1 The Probability

Letmi be the probability that the ith dispenser malfunctions, and di, j the probability that the
ith dispenser releases water at the temperature of the jth dispenser if it malfunctions.
Then there are 3 ·3 = 9 possibilities in total. We can label these possibilities as (i, j)mean-
ing the ith dispenser malfunctions and releases at the temperature of the jth dispenser.
The probability that this happens is clearly mi · di, j , and you can verify that the sum of the
probabilities across all 9 possibilities is 1.
A strategy is a selection (s1,s2,s3) of amounts to obtain from each dispenser. Note that simust be≥ 0.
Note that the statement requires s1 + s2 + s3 to be exactly 1000 milliliters, but actually, we
can set it to anything we want, since you can easily verify that only the proportions matter,
i.e., (s1,s2,s3) has the same “probability of success” as (αs1,αs2,αs3), since these valuesare only used as weights for the average. Therefore, instead of requiring the sum to be 1000
milliliters, it should be more convenient to set it at s1 + s2 + s3 = 1. The answer will still be
the same.
What is the “probability of success” of strategy (s1,s2,s3)? Well, we know that the dispensers
give out water in temperatures (t1, t2, t3), but that’s if they are functioning correctly. Let
(t ′1, t

′
2, t
′
3) be the actual temperatures they give out. These t ′i values are easily computed for

each of the 9 possibilities. Then the temperature of the concoction will be:
s1t ′1 + s2t ′2 + s3t ′3

s1 + s2 + s3
.

but note that we conveniently set s1 + s2 + s3 = 1, so this is just
s1t ′1 + s2t ′2 + s3t ′3.

We can now compute the “probability of success” of strategy (s1,s2,s3). It is simply the sum
of the probabilities (mi ·di, j) across all the (i, j) such that this average temperature is in the
range [`,u]. Formally, it is:

∑
1≤i, j≤3

`≤s1t ′1+s2t ′2+s3t ′3≤u

midi, j.
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Thus, for any given strategy (s1,s2,s3), this is easy (and quick) to compute.
The answer is then the maximum of this sum across all valid strategies (s1,s2,s3).
J.1.2 The Candidates

Unfortunately, there are an infinite number of candidates, since the sis can be any (nonneg-ative) real number. We must find a way to limit the number of candidates to check, while
ensuring that the optimal strategy is always included in our candidates.
First, note that s3 = 1− s1− s2, so we only actually have two degrees of freedom: selecting
s1 and s2. Thus, we can represent a strategy as a point (s1,s2) in the 2D plane. The only valid
strategies are in the region bounded by the following inequalities:

s1 ≥ 0
s2 ≥ 0

s1 + s2 ≤ 1

(The last one is equivalent s3 ≥ 0.)
In other words, the valid region is the triangle with vertices (0,0), (0,1), (1,0).
Also, note that the inequality

s1t ′1 + s2t ′2 + s3t ′3 ≤ u

becomes
s1t ′1 + s2t ′2 +(1− s1− s2)t ′3 ≤ u

s1(t ′1− t ′3)+ s2(t ′2− t ′3)≤ u− t ′3.

Similarly,
s1t ′1 + s2t ′2 + s3t ′3 ≥ `

becomes
s1(t ′1− t ′3)+ s2(t ′2− t ′3)≥ `− t ′3.

But now, note that all our constraints are of the form as1 +bs2 ≤ c.16 Furthermore, the set
of points (s1,s2) satisfying as1 + bs2 ≤ c is a half-plane! The boundary of this half-plane is
the line as1 + bs2 = c. Thus, for a given candidate (s1,s2), the “probability of success” is
determined by the set of half-planes containing the point (s1,s2).
But if we collect all boundaries of the half-planes, then the plane will be decomposed into
a bunch of convex regions, whose boundaries are line-segment subsets of the half-plane
boundaries. In each of these regions, the “probability of success” for all points there will be
the same, since the probability can only change if an inequality as1 +bs2 ≤ c becomes true
or false (or vice versa), and that can only happen if we pass through a half-plane boundary.
This also means, in particular, that the optimal solution lies in some convex region. But since
the probability of success is the same for all points in this region, this means that any point

16The form “x≥ y” is equivalent to “−x≤−y”.
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in this convex region is also an optimal solution. This means that we can just take an easy-
to-identify point in each region as our candidate. For convex regions, the obvious candidates
are simply the vertices of the region. But vertices of regions are simply intersections of two
boundary lines. Therefore, we can limit our candidates to those points, because the number
of intersections is finite!
In summary, we have shown that there is an optimal solution that lies in the intersection of
two boundary lines.17
So the solution is simply this:

1. Collect all the half-plane boundaries as1 +bs2 ≤ c (including s1 ≥ 0, s2 ≥ 0 and s1 +
s2 ≤ 1).

2. Collect all intersection points across every pair of boundaries (that are not parallel).
3. Remove the intersection points that are outside the “triangle of valid strategies”.
4. The optimal solution lies in one of these intersection points.

The running time of this solution depends on the number of candidates to test, which we can
bound as follows:

• For each of the 9 ·(9−1)/2 pairs of possibilities, there are at most 4 candidates, since
each possibility gives rise to two parallel half-plane boundaries, and so there may be
2 ·2 intersections among them. Overall, these give rise to up to 9 ·(9−1)/2 ·4 = 144
candidates.

• For each of the 9 possibilities, there are at most 3 · 3 more candidates, since each
boundary only intersects the boundaries of the “triangle of valid strategies” at most 3
times. These give rise to up to 9 ·3 ·3 = 81 candidates.

• There are 3 more candidates corresponding to the vertices of the triangle of valid
strategies: (0,0), (1,0) and (0,1).

Thus, overall, there are at most 144+81+3 = 228 candidates! Each candidate can then be
checked quickly, so the overall solution runs quickly.
As an aside, although 228 is already low enough to make us feel confident that the solution
will pass, we can nonetheless still improve this boundby beingmore careful with our analysis:

• Three of the “9 possibilities” are actually the same, and they correspond to the ith
dispenser malfunctioning into the ith dispenser, i.e., not actually malfunctioning! So
we can replace 9 with 7.

• For each of the 7 possibilities, there are actually just 3 · 2 more candidates, not 3 · 3,
since each boundary only intersects the triangle of valid strategies at most 2 times.
The third point is outside the triangle and thus may be omitted.

17You may wonder if this is actually correct, since the boundary itself only belongs to the region in one of the
sides of that boundary. But thankfully, the probabilities are nonnegative, and the boundary is always on the
side where the inequality is true (since the inequality is not strict: “≤”), so the boundary point is included in the
“best” region.

Problem J: A Cold Macchiato 41



These give a better bound of 7 ·6/2 ·4+7 ·3 ·2+3 = 147 candidates!
We can quantify the running time in another way. Suppose there are n dispensers. Then
there are O(n4) candidates to test, and each one can be tested in O(n2) time. Therefore,
the running time is O(n6). Thankfully, in our case, n = 3, so this is very fast. But for bigger
n, can you find a faster solution than O(n6)?
Note: You should not use floats here, since the answer could belong to a convex region of area
0, so any imperfection will make the answer incorrect. In particular, if the coordinates of the
strategy don’t have terminating binary expansions, then the floats couldn’t even represent
them exactly!

J.2 Editorial

This problemwas inspired by a broken water dispenser at Josh’s office. We just came up with
a probability problem around the premise of a “broken water dispenser”.
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Problem K: I Brook the Code!

Setters: Payton Yao
Testers: Kevin Atienza, Anton Rufino
Statement Authors: JD Dantes
Test Data Authors: Josh Quinto
Editorialists: JD Dantes

K.1 Solution

In this problem, you are asked to sort pairs of numbers. You could try to use simpler ap-
proaches like Bubble or Selection Sort. However, these run in O(n2) time and would result
to TLE as the size of the input can be up to 105. As a rule of thumb, your solution’s running
time should be in the order of 108 steps; thus O(n2) sorts would pass if the size of the list to
sort is in the order of 104.
For the given bound of 105, an O(n logn) sorting approach would be fine, such as Quick-
sort. You could implement such sorts yourself, but programming languages usually have
such functionalities built-in already. For C/C++, there’s ‘qsort()’ or ‘sort()’. Python has
‘sorted()’ or ‘sort()’ which you can use on lists.
Sorting algorithms are typically demonstrated with single integers, not pairs. To extend it to
themultiple number case, we just have to definewhenonepair is “less than” another pair. We
can do so by creating comparators.18 Alternatively, we note that some useful classes, such as
‘pair’ or ‘tuple’ in C++ or ‘tuple’ in Python, conveniently evaluate comparisons by starting
from the first elements and moving towards the last, and so we can use these directly when
using ‘sort()’. For this problem, the heights are guaranteed to be distinct and sorting of
the weight does not really matter, but otherwise the default comparators would probably be
useful.
There also exist some data structures that are already internally sorted, such as C++’s ‘map’
and ‘set’ classes. Items are sorted as you insert, and you can then just traverse the entire
‘map’ or ‘set’ to print the items in the desired order.
If you’d like to learn more about the time complexities of other common data structures and
sorting algorithms, check out Big-O Cheat Sheet.

18see C++ examples here: http://www.cplusplus.com/reference/algorithm/sort/
?kw=sort
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Problem L: Break the Pattern!

Setters: JD Dantes
Testers: TBA
Statement Authors: JD Dantes
Test Data Authors: JD Dantes
Editorialists: JD Dantes, Kevin Atienza

L.1 Solution

Given the ` integers s1,s2, . . . ,s`, we want to find a polynomial where each si is a root.
Note that the polynomial (x− s1)(x− s2) . . .(x− s`) will fit this description, assuming that
it is within the maximum degree k. Furthermore, any multiple of this polynomial also fits the
description, as long as the degree is≤ k.
We can then multiply any arbitrary term (x− a) and the description will still hold (again,
if the maximum degree allows for it). Alternatively, we can also just multiply a constant to
produce a different polynomial. In fact, using constants, we can product at least 999983
distinct polynomials just by multiplying distinct nonzero constants, more than enough for
the given bounds.
Also, amazingly, it turns out that this is the only way to produce valid polynomials. In other
words:
Theorem L.1. Let s1,s2, . . . ,s` be distinct values. Then any polynomial with all sis as roots is amultiple of (x− s1)(x− s2) . . .(x− s`).
Note that it is crucial in the theorem that the sis are distinct.
The task is then to multiply and produce the polynomials’ expanded forms to get the desired
coefficients. As the bounds are rather small, we could do this in a straightforward manner,
such as representing the polynomial coefficients as vectors/lists and then repeatedly multi-
plying each (x− si) until we get the final polynomial. Note that you also have to reduce the
coefficients modulo 999983, otherwise, your coefficients will likely exceed the 109 bound on
the coefficients, or even overflow.
Finally, note that there could be repeating roots in the sequence, possibly causing you to
exceed the maximum degree k if unhandled. At the start, we should remove the duplicate
numbers in the sequence as it suffices to use just one (x− si) to satisfy the multiple occur-
rences of each si in the sequence.
Here’s a proof of the theorem:
Proof. Let p(x) = (x− s1)(x− s2) . . .(x− s`), and let a(x) be any polynomial having all sisas roots. We will show that a(x) is a multiple of p(x). Let q(x) and r(x) be the quotient and
remainder, respectively, when we divide a(x) by p(x). In other words,

a(x) = p(x)q(x)+ r(x).
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Note that either r(x) = 0 or the degree of r is strictly less than the degree of p, which is `.
But note that for each i, r(si) = a(si)− p(si)q(si) = 0−0q(si) = 0. Therefore, r is a polyno-
mial with degree less than `with at least ` distinct roots. But note that a nonzero polynomial
with degree d has at most d roots. Therefore, the only possibility is that r(x) is the zero
polynomial. Therefore, a(x) = p(x)q(x), i.e., a(x) is a multiple of p(x), as desired.
Of course, this assumes that the statement “every nonzero polynomial with degree d has at
most d roots” is true even in our case, where we consider 999983 to be equivalent to 0. This
is true if and only if the number we chose is prime (and luckily, 999983 is prime). This also
needs proof.
We use the notation Z/nZ to denote the set of integers modulo n.
Theorem L.2. Every nonzero polynomial p(x) with coefficients in Z/nZ have at most deg p
roots if and only if n is prime.
Proof. The forward direction is easy; we prove the converse, and assume n is composite and
can be factorized nontrivially as n = ab. Then consider the polynomial ax. This degree-1
polynomial has at least 2 roots, 0 and b, which is what we wanted.
For the backward direction, assume n is prime. A key property of primes we will use is that if
ab is divisible by (the prime) n, then either a is divisible by n, or b is divisible by n.
Let a1 be a root of polynomial p. Let’s divide p(x) by x−a1 using long division. We will get
p(x) = q(x)(x− a1)+ r(x), where q(x) is some polynomial of degree deg p− 1, and r(x)
is a polynomial of degree< 1, i.e., a constant. Then r(a1) = p(a1)−q(a1)(a1−a1) = 0−
q(a1) ·0 = 0, so r(x)must in fact be the zero polynomial. Therefore, p(x) = q(x)(x−a1).
We can repeat this process on q, until we end up with some polynomial without any roots, or
we end up factorizing p completely into linear factors, i.e., p(x) = (x−a1)(x−a2) · · ·(x−
ak)q(x), where q is a nonzero polynomial such that degq = deg p− k without any roots in
Z/nZ. Note that this also implies that the number of linear factors, k, is at most deg p, since
the degree of a nonzero polynomial is nonnegative.
Now, suppose a is a root of p. Then 0 = p(a) = (a− a1) · (a− a2) · · ·(a− ak) · q(a), i.e.,the latter product is divisible by n. But remember our key property of primes? It implies that
one of (a− a1),(a− a2), . . . ,(a− ak),q(a) must be divisible by n. q(a) is not divisible by
n since q doesn’t have any roots. Therefore, it must be the case that some (a−ai)must be
divisible by n. But in this case, a must be equivalent to ai. Therefore, we have shown that
any root a of p must be one of {a1, . . . ,ak}, and thus, p has k ≤ deg p roots.
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Problem M: Thin Ice

Setters: Kevin Atienza, Payton Yao
Testers: TBA
Statement Authors: Pio Fortuno III
Test Data Authors: Patrick Celon
Editorialists: Patrick Celon

M.1 Solution

The problem can be summarized into a single statement: given a grid graph and a starting
position s, find a path that travels through all cells! As straightforward as this looks though,
there are some things that we have to take note of. One is that the value t ·r ·c, at maximum,
is much much larger than the 10 megabyte output constraint; there might be test files that
have a lot of impossible scenarios. Therefore, we have to determine a way to find whether a
given test case is possible quickly, say in constant time.
We can simplify the problem by noticing that isomorphic cases are the same; we just need to
rotate them to match the path. From there, we can then start eliminating edge cases.

Figure 1: A solution string can be the same path, but rotated 90, 180, or 270 degrees.
Start with the easiest edge case: a 1×n grid. A path can only go in one direction, therefore
it is impossible if you are tasked to start at the middle. See Figure 2a. Another insight to the
problem lies in the fact that a path is always possible if rc is even. (We’ll call a grid where rc
is even an even grid, and odd otherwise.) This is because we can construct a cycle that goes
through all cells for any type of even grid. See Figure 2b.

(a) 1×n edge case
(b) A generic solution for any even grid

Figure 2
In Figure 2b, the path zig-zags all the way to the bottom to return to its starting point. There-
fore, to create a path from any point, we just have to create the cycle, and offset the starting
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Figure 3: For odd grids, a zig-zag traversal is only valid from corners as it can’t loop back to
the start.

Figure 4: A grid can be represented by a checkerboard (alternating colors for adjacent cells)

point to the given point. Note that this is only possible if the number of rows in the zig-zag
are even. Otherwise, the zig-zag attempt will look like Figure 3, and we can’t loop back at the
start. Thus, it is enough that one of the sides are even, as we can always rotate it such that it
is similar to the one in Figure 2b.
The remaining cases are of odd grids (both sides are odd), and it turns out that it isn’t always
possible. We can determine if it is possible to create a path using the following properties:

• A grid can be colored black and white alternately (checkerboard).
• Any cell movement results in a change of color.
• The number of black cells (majority) 6= the white cells (minority).

Since rc−1 is even (from rc being odd), the final destination cell should be the same color as
the starting cell. If this starting cell is of the minority color, there are simply not enough cells
left for it to traverse to — it needs rc−1

2 cells to transfer to, but there are only rc−1
2 −1 cells

to transfer to as it already started on a cell of the same color. Thus, this case is impossible.
This property is called color-incompatibility. In other words, a grid is called color-compatible
if and only if the starting cell rests on a majority square. If a grid is color-incompatible, then
the above argument shows that there is no path. Amazingly, it turns out that if it is color-
compatible, then a path exists!
We can now check to see whether a solution exists or not using these conditions:
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// start_row and end_row are 1−indexed
def is_solvable(row, col, start_row, start_col):

if row == 1 and (start_col != 1 and start_col != col) or
col == 1 and (start_row != 1 and start_row != row):
// 1xn / nx1 edge case
return false

elif row*col % 2 == 0:
// even case
return true

else:
// odd case
// Check if the starting point falls into a majority square
return (start_row + start_col) % 2 == 0

Let’s now describe a solution for the color-compatible case.
To reduce the number of cases to solve, we can define a rotation function that rotates a given
traversal string:
// start_row and end_row are 1−indexed
dir = "URDL" // the directions while rotating clockwise

// Rotate a traversal string ’count’ times to the right
def rotate_right(traversal, count):

return string(dir[(dir.index(c) + count)%4] for c in
traversal)

Thus, if needed, we can rotate a given grid into an isomorphic form that we can easily find a
solution for, or at least into a form a bit more convenient for us.
One solution (out of many) would be to rotate it such that it is in the upper-left quadrant, and
create an even grid (with even rows and columns) with the starting point near the bottom-
right position. Then there would be three regions of interest: the even grid, the grid to
the right, and the odd grid below. Then there are two cases, depending on whether the
start_row/col is odd or not. This is shown in Figure 5.

(a) when start_row/col is even (b) when start_row/col is odd
Figure 5: Odd grid cases
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In general, we can solve the odd-grid case by going from S→ 1→ 2→ 3→ 4→ 5. The
paths 2→ 3 and 4→ 5 are similar to Figure 3 and are trivial. Thus we are left with how to
make a path from the starting point S to point 1. If start_row is even, then we can do
something similar to Figure 6a to end up at 1. If start_row is odd, then we can loop back
under and behind S, then continue to do the same zigzag motion upwards (see Figure 6b).

(a) when start_row/col is even (b) when start_row/col is odd
Figure 6: Traversal on the upper-left grid

Finally, we can define the full solution to be the combination of the solutions for the three
cases:

1. The grid is a 1×n or n×1 edge case.
2. The grid is an even grid.
3. The grid is an odd grid.

For 1 and 2, we can use the solutions provided by Figure 2a and Figure 2b respectively. For 3,
we use the solutions Figure 5a for starting positions at even cells (both row/col is even), and
Figure 5b for starting positions at odd cells.

M.2 Editorial

A generalized version of the problem can be read about here: https://doi.org/10.
1155/2012/475087.
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