
Algolympics 2021

Solution Sketches

Problem F: Virgo Coconut Oil

● Check if a date is between September 16 and
October 30, inclusive.

● Most of the info is unnecessary, ignore them!

Kevin Atienza

Problem F: Virgo Coconut Oil

● Solution 1:
○ Enumerate everything
○ Then find the index in the list

● Solution 2:
○ Enumerate only September and October

Kevin Atienza

Problem F: Virgo Coconut Oil

● Solution 3:
○ If month is September, check that day ≥ 16
○ If month is October, check that day ≤ 30
○ Otherwise, NO.

Kevin Atienza

Problem I: Major Constellation Assembly

● Vectors/lists are enough (e.g., in operator of
Python).

● Can also use set data structure.
○ Better complexity (faster): Sets can handle “contains”

efficiently.
○ You can also use set difference to get elements in one

set not in the other set. Also, it’s efficient.

JD Dantes

Problem I: Major Constellation Assembly

● Python (present and attendees are sets)

print("STAR STREAM HACKED!!!"

 if present - attendees else

 "START THE MEETING."

 if len(present) * 2 >= len(attendees) else

 "NO STARS IN THE NIGHT SKY.")

JD Dantes

Problem I: Major Constellation Assembly

● In some languages (e.g., C++, Java), be careful of integer
division which would result to floored values

● if (something >= whole / 2)
○ Be careful if whole is an integer. Can multiply instead:

if (something * 2 >= whole)

○ Alternatively, typecasting may work, but use of floating points is
discouraged due to precision issues. Better to use the above approach.

if ((double) something >= (double) whole / 2)

JD Dantes

Problem D: What a Crabulous Birthday

● For each cell:
○ For each direction:

■ Walk until you find another letter/digit.
■ Must not be adjacent.

● Then remove duplicates, sort, then print.
● Improvement: Only check down and right.

○ No more duplicates

Tim Dumol

Problem E: Attack of the Cones

● Greedy insights
○ For the same flavor, better assign 1-scoopers before

3-scoopers
○ ...and 3-scoopers before 6-scoopers
○ For the same number of scoops, assign “flavor > 0”

before “flavor = 0”.

Kevin Atienza

Problem E: Attack of the Cones

● Greedy insights
○ Better to assign “3-scoopers (flavor=0)” before

6-scoopers
○ ...and “1-scoopers (flavor=0)” before 3-scoopers

Kevin Atienza

Problem E: Attack of the Cones

● Using all insights, we now have determined the
correct order to assign people!

● When assigning “flavor=0” people, just reserve
enough scoops for them, not letting subsequent
steps “take too much”.

Kevin Atienza

Problem J: I used to be a musician, then I ...

● Try all possibilities up to 2 rows, then maximize on
columns.
○ For each pair, update sums and find top 3 in O(c)

instead of O(rc).

● So complexity is O(r2)O(c), or O(r2c).
● Do the same for columns → rows. O(rc2)
● Overall, O(rc(r + c)).

Josh Quinto

Problem M: Crash Landing

● Linearity of expectation:
○ E[Hour1+Hour2+Hour3] = E[Hour1]+E[Hour2]+E[Hour3]

● Hour k is just Hour 1 but with p[i] replaced with
1 - (1 - p[i])k

○ 1 - p[i] = probability of component i surviving day 1
○ (1 - p[i])k = probability of component i surviving day k
○ 1 - (1 - p[i])k = prob. of component i breaking on day k

JD Dantes

Problem M: Crash Landing

● Just need to know how to compute E[Hour1] now
● Bottom-up DP to compute E[Hour1]
● For every subtree, calculate both

E[sum(l)] and E[sum(l)2]
● E[Hour1] is then E[sum(l)2] of the root
● Linear time

JD Dantes

Problem L: The Trolley Problem: Solved

● “Eulerian path”
● There is a tour through all edges iff

○ There are 0 or 2 odd degree nodes.
○ AND all edges are connected.

● Gotcha: Ignore nodes without edges!

Payton Yao

Problem L: The Trolley Problem: Solved

● Each edge turns at most two odd nodes even.
● So if connected and k odd, then minimum is

max(0, k/2-1).

Payton Yao

Problem L: The Trolley Problem: Solved

● If disconnected, need to add extra edges to
connect them.

● If all components have an odd node, then still
possible with max(0, k/2-1).

● Otherwise, for every component without odd
node, need to add one more edge.

● Thus, max(0, k/2-1+(#comps without odd nodes))

Payton Yao

Problem L: The Trolley Problem: Solved

● “i ≥ 17” constraint implies at most 16 components.
● DP on subsets of components.
● O(3#components)

Payton Yao

Problem G: Weighing Scales Heist

● BFS or DP
● Answer must start at S[0]/T[0], end at S[N-1]/T[N-1]
● For each (row,col) there are 2/4 ways to arrive

○ horizontal/vertical or up/down/left/right → orientation

● P(orie, row, col, i)
○ Optimal passphrase starting at (row, col) with

orientation orie
○ Containing subsequence (S[i]/T[i] … S[N-1]/T[N-1])

Patrick Celon

Problem G: Weighing Scales Heist

● Generate the next level P(orie, row, col, i-1) from
P(orie, row, col, i)
○ Check all P(orie, row, col, 0) for the shortest length
○ Naive BFS O(4rc(r+c)) will cause TLE here
○ Generation can be done in O(4rc) per level

● Total complexity is now O(4rcn)

● Backtrack to output the optimal path

Patrick Celon

Problem G: Weighing Scales Heist

● Might need to compress data
○ Entire search space is stored for backtracking
○ 4*250*250*250 ≈ 64 million elements
○ 4 ints (16 bytes) for length, orie, row, col etc.

■ Will use ≈ 1 GB total just for the search space
○ Compress by using short/char or bitmasking

■ 8 bits for row,col
■ 1 or 2 bits for orientation/direction
■ 10-13 bits is enough for length

Patrick Celon

Problem K: Hot Sus Three

● Only need to assign people that weren’t reported
● For every person, call the person they reported

their “parent”
● Start with an unassigned person, then go the

parent, then the parent, etc., until you find a
person with a fixed location, or you loop around
without finding one

Kevin & JD

Problem K: Hot Sus Three

● If you find a fixed person, call that the “root”, and
extract the tree of people rooted at that root.
○ Only include people that do not have fixed locations,

and their fixed children (if any).

Kevin & JD

Problem K: Hot Sus Three

● Bottom-up DP:
○ locations[i] := set of possible locations of i with respect

to its subtree.
○ neighbors[i] := set of all nodes in locations[i] and their

neighbors.
○ DP: locations[i] = ⋂ neighbors[j] for all children j of i
○ DP: neighbors[i] = ⋃ ({k} ∪ adj[k]) for all k in locations[i]

Kevin & JD

Problem K: Hot Sus Three

● locations[i] and neighbors[i] can be represented
as bitmasks.

● Assignment for this tree is possible iff the fixed
location of root is in locations[root].

● You can then assign top-down; choosing any
available node (consistent with parent) is ok.

● O(cn2/wordsize)

Kevin & JD

Problem K: Hot Sus Three

● If you loop without finding a fixed location, then
choose a node in the cycle arbitrarily as the “root”,
try all n possibilities for its location, and use the
previous algorithm. If all fail, impossible.

● O(cn2/wordsize) × O(n) = O(cn3/wordsize).

Kevin & JD

Problem K: Hot Sus Three

● Implementation tip: Defensive programming.
○ Try assigning with the algorithm above, and then check

the validity at the end (even if you’re “sure” it works).

Kevin & JD

Problem A: The Complex War

● A(z) = B(z) → A(z) - B(z) = 0
● A(z) - B(z) is a polynomial
● So the z’s are common roots of A(z) - B(z) and

C(z) - D(z)
● Theorem: r is a common root of p and q iff r is a

root of gcd(p, q).
○ Proof via Factor thm. + Fundamental Thm. of Algebra

Guissmo Asuncion

Problem A: The Complex War

● So we need to find the gcd of two polynomials.
● Euclid’s algorithm: Cancel the highest-degree

term until one of them becomes the 0 polynomial.
● We have now reduced the problem to: Find the

count and sum of roots of a single polynomial p.
● If p = 0, “INFINITE”. Otherwise, finite.

○ Proof via Fundamental Theorem of Algebra

Guissmo Asuncion

Problem A: The Complex War

● The sum of roots of azn + bzn-1 + … is -b/a.
○ Proof: Factorize to linear terms: a(z - r1)(z - r2)...(z - rn),

expand, then equate coefficients of zn-1.

● Issue: -b/a is the sum counting multiplicities. We
need to remove duplicates.

Guissmo Asuncion

Problem A: The Complex War

● Theorem: r is a repeated root of p iff r is a
common root of p and p′ (its derivative).
○ Proof (⇒):

■ p(z) = (z - r)2q(z)
■ ⇒ p′(z) = (z - r)(2q(z) + (z - r)q′(z))
■ ⇒ p′(r) = (r - r)(...) = 0.

Guissmo Asuncion

Problem A: The Complex War

● Theorem: r is a repeated root of p iff r is a
common root of p and p′ (its derivative).
○ Proof (⇐):

■ p(z) = (z - r)q(z) with q(r) ≠ 0
■ ⇒ p′(z) = q(z) + (z - r)q′(z)
■ ⇒ p′(r) = q(r) + (r - r)(...) = q(r) ≠ 0.

Guissmo Asuncion

Problem A: The Complex War

● More general theorem: r is a root with multiplicity
m of p iff r is a root of multiplicity m-1 in both p and
p′. Similar proof.

● Thus, we just need to subtract the roots of
gcd(p, p′)!

Guissmo Asuncion

Problem A: The Complex War

● count_distinct_roots(p) =
degree p - degree gcd(p, p′).

● sum_distinct_roots(p) =
sum_roots(p) - sum_roots(gcd(p, p′)).

● Need arbitrary precision integers and fractions. Or
python.

Guissmo Asuncion

Problem A: The Complex War

● Also, parsing! Several options.
● Parsing Option 1: Use some infix→postfix algorithm

with a stack
● Parsing Option 2: Use some ad hoc/LL parser

(recursion)

Guissmo Asuncion

Problem A: The Complex War

● Parsing Option 3: Python.

z = Polynomial(0, 1)

p = eval(input()) - eval(input())

q = eval(input()) - eval(input())

solve(p, q)

Guissmo Asuncion

Problem B: Orion Find

● If collinear, impossible. Otherwise, possible.
● Simplify!

○ Translate so that one point is origin.
○ Rotate so that one point is (x, 0, 0) for x > 0.
○ Scale (evenly) so that it becomes (1, 0, 0).
○ Rotate again so that 3rd point is (x, y, 0) with y > 0.
○ Finally, rotate again to ensure x ≥ 1/2.

Kevin Atienza

Problem B: Orion Find

● The three points are now (0, 0, 0), (1, 0, 0), (x, y, 0)
with y > 0, x ≥ 1/2.

● There should be a solution (X, Y, Z) with X ≤ 1/2.

Kevin Atienza

Problem B: Orion Find

● Points: (0, 0, 0), (1, 0, 0), (x, y, 0) with y > 0, x ≥ 1/2.
● Pick some viewpoint (X, Y, 0) with X ≤ 1/2. Then

rotate along x-axis until third point is perceived to
be “equidistant” from the first two.
○ While rotating, the first two points stay fixed in the sky,

while the third point will traverse a closed curve in the
sky.

Kevin Atienza

Problem B: Orion Find

● Four things may happen:
○ You form a “tall” isosceles triangle

■ especially if X < 0, Y ≈ 0
○ You form an equilateral triangle.
○ You form a “wide” isosceles triangle.
○ You can’t make the third point equidistant.

Kevin Atienza

Problem B: Orion Find

● Key: Starting from, say, (-ɛ, 0, 0) to, say, (1/2, 1/2, 0),
you get those four possibilities in sequence.

● Bisect on that line segment!
● Complexity is (complexity of bisection)2 because

rotating the third point requires another bisection.

Kevin Atienza

Problem B: Orion Find

● The solution is not unique. You can probably do
other iterative stuff.
○ Just be careful not to make the triangle converge to a

degenerate “0 area equilateral triangle”. Note that the
grading uses relative error, not absolute.

Kevin Atienza

Problem H: Scorpius Legs Flavor Inversion

● The sequence is bitonic: Increases then decreases
(both strict).

● There will be several streaks of consecutive
increasing integers (e.g., 5, 6, 7,...) or decreasing
(e.g., 9, 8, 7, …)
○ Can prove that there are at most O(√n) streaks per

query.

Kevin Atienza

Problem H: Scorpius Legs Flavor Inversion

● Given k streaks, can compute the number of
inversions in O(k) time by considering the first and
last streaks then recursing.

● Since k = O(√n), query time is O(√n), which is fast.
● O(n + q√n) time overall.

Kevin Atienza

Problem C: Gem in Isaac

● “p is in the vicinity of C” is equivalent to
“p is in the convex hull of C”

● Compute all c convex hulls.
○ Ignore edges

● “c” is small, so for each query point, just find
distance to each hull separately.

● If we can do that quickly, we’re done.

Karl Pilario

Problem C: Gem in Isaac

● The closest point to
each hull is either a
vertex or a side:

Karl Pilario

Problem C: Gem in Isaac

● Here are regions
closest to each point
and side.

Karl Pilario

Problem C: Gem in Isaac

● Simplify by subsuming
“closest to vertex”
region to the
corresponding
“closest to side”
region:

Karl Pilario

Problem C: Gem in Isaac

● To find which region a
point belongs to,
binary search on
regions like these:

Karl Pilario

Problem C: Gem in Isaac

● To find which region a
point belongs to,
binary search on
regions like these:

Karl Pilario

Problem C: Gem in Isaac

● To find which region a
point belongs to,
binary search on
regions like these:

Karl Pilario

Problem C: Gem in Isaac

● To find which region a
point belongs to,
binary search on
regions like these:

Karl Pilario

● Each such region is bounded by O(1) rays and
segments, so can be checked against in O(1).

● Therefore, we can find the closest side in O(log n)!
● Overall O(n log n) to compute hulls and O(qc log n)

to find distances.

Problem C: Gem in Isaac
Karl Pilario

Thank you! ● A: The Complex War - Asuncion
● B: Orion Find - Atienza
● C: Gem in Isaac - Pilario
● D: What a Crabulous Birthday - Dumol
● E: Attack of the Cones - Atienza
● F: Virgo Coconut Oil - Atienza
● G: Weighing Scales Heist - Celon
● H: Scorpius Legs Flavor Inversion - Atienza
● I: Major Constellation Assembly - Dantes
● J: ...took an arrow to the knee - Quinto
● K: Hot Sus Three - Atienza, Dantes
● L: The Trolley Problem: Solved - Yao
● M: Crash Landing - Dantes

● Kevin Charles Atienza
● Joseph Daniel Dantes
● Marc Patrick Celon
● Rene Josiah Quinto
● Payton Robin Yao
● Tim Joseph Dumol
● Karl Ezra Pilario
● Jared Guissmo Asuncion

