
Algolympics 2023

Solution Sketches

J: Sensor Logs
Samsung

● Solution 1: Keep track of the room each person is
in at all times.
○ Use array.

● Each corridor they go through must connect to that
room.
○ Sus if this fails!

● The new room is the other endpoint of the corridor.

J: Sensor Logs

● Solution 2: If you go through a corridor, you can
only go back through the same corridor.

● So each person’s log can only look like
a a b b c c d d …
○ Last log can be unpaired.
○ Can be empty.

● Sus if and only if not of this form.

Samsung

K: Star Seeker’s Socks

● Let t = total number of ‘bad’ socks.
○ Important: each pair has two socks!

● Let s1, s2, …, sm be the numbers of socks of the
‘good’ sock types.

● If you take t + m socks, worst case you could have
gotten all t bad ones and 1 of each good type. Fail!

● Thus, you need to take at least t + m + 1.

Samsung

K: Star Seeker’s Socks

● On the other hand, if you take t + m + 1 socks, you
are forced to have a duplicate good sock of same
type.
○ Pigeonhole principle.

● So the answer is t + m + 1.

Samsung

K: Star Seeker’s Socks

● Python solution (single case):

Samsung

input() # no need for n, throw it out

c = [2*v for v in map(int, input().split())]

print(sum(c) + 1

 - sum(c[i-1] - 1 for i in map(int, input().split())))

B: Cult of Wah!

● “Just do it!”
○ Put encrypted words in a set, say E.
○ For each k = 1, 2, 3, …

■ Shift all Wah-List words by k, then check if they’re all
in E.

○ Return first k that works.
○ If no k works, answer is -1.

● (you can also do it the other way around: put the Wah-List words into a set)

Samsung

B: Cult of Wah!

● Takes O(∞) time to finish.
● But just note that shifting by k is the same as

shifting by k+26, so if none of 1, 2, …, 26 works,
none will work at all!

Samsung

B: Cult of Wah!

● Some techniques to make it easier:
○ Define a function shift(word, k) that shifts a word by k.

Then just call this function many times.
○ Some languages have convenient syntax for

manipulating sets.
■ E.g., in Python, x <= y means “x is a subset of y”.

Samsung

B: Cult of Wah!

● Gotcha: k = 26 is a possible solution, even though
it is equivalent to doing nothing!
○ k = 0 is not a positive integer.

Samsung

M: TheBuzz

● We need to find pairing between names and labels
[1, 2, …, n] such that
○ (name[i], name[j]) is an edge

iff
(label[i], label[j]) is an edge.

○ They are of the same type (if they exist).

● This check can be done in O(n2) time.

Samsung

M: TheBuzz

● Since n is small (≤ 10), just try all possible pairings!
● There are n! pairings.
● 10! = 3628800, so this should pass.

Samsung

M: TheBuzz

● We can simplify things a bit: turn
“no edge between (i, j)” into a 4th type of edge.
○ There are now 4 edge types, but the graph is complete,

simplifying implementation a bit.

● Objects like this that are invented for convenience
are sometimes called dummy or sentinel objects.

Samsung

H: Not Just an NP-Hard Problem

● Decompose into subproblems.
● For the no-stick-breaking version:

a. Given two beams w/ lengths x and y, find the optimal
angle to join them.

b. Given the stick sizes, find the best way to reassemble
them.

Cisco Ortega

H: Not Just an NP-Hard Problem

a. Given two beams w/
lengths x and y, find the
optimal angle to join them.

● Area = base · height / 2.

Cisco Ortega

x y
height

base

H: Not Just an NP-Hard Problem

● Fix base x, then rotate y.
● We now need to

maximize the height.
● So area is maximized

when perpendicular!
● Thus, max. area = xy/2.

Cisco Ortega

x

y

H: Not Just an NP-Hard Problem

b. Given the stick sizes, find the best way to reassemble
them.

● NP-Hard! This is essentially the subset sum problem.
● No known polynomial-time solutions.
● So let’s find a solvable variant.

Cisco Ortega

H: Not Just an NP-Hard Problem

● Suppose you can break sticks at any time. What is
the answer?

● You can basically build any beam sizes you want!
○ More precisely: If t = total length of sticks, we can

produce beams (x, y) iff x + y = t.
■ (and of course x and y must be positive)

Cisco Ortega

H: Not Just an NP-Hard Problem

● Maximize xy/2 subject to x + y = t.
● Basic optimization. The answer is a square: x = y = t/2.

○ But x and y need to be integers, so sometimes we must
have |x - y| = 1.

● Thus, the optimal beams are roughly equal:
○ (t/2, t/2) if t is even,
○ ([t/2], [t/2] + 1) if t is odd.

● This solves the “easy” variant.

Cisco Ortega

H: Not Just an NP-Hard Problem

● Insight: You can produce roughly equal beams
(t/2, t/2) or ([t/2], [t/2]+1) just by breaking one stick!

Cisco Ortega

H: Not Just an NP-Hard Problem

● Thus, the optimal solution is the same!
● O(n)

Cisco Ortega

H: Not Just an NP-Hard Problem

● Gotcha: The middle point may already be cut!
● If so, just cut a random stick.

○ Always possible because x[i] ≥ 2.

Cisco Ortega

C: Dethrone Antares Now

● If staying is okay, then people can wait. So just find
the “center” by doing a breadth-first search (BFS)
from each of the k sources.

● Doesn’t work since staying is not okay.

Cisco Ortega

● But they can just go back and forth some edge!
● Thus, if they can reach a node at time t, then they

can also reach it at t+2, t+4, t+6, …
● So, we just need to find earliest time to reach each

node in odd time, and also even time.

C: Dethrone Antares Now
Cisco Ortega

C: Dethrone Antares Now

● Trick: Build a graph with 2n nodes.
● For each node i,

○ add two nodes (i, even) and (i, odd).

● For each edge i – j,
○ Add edge (i, even) – (j, odd).
○ Add edge (i, odd) – (j, even).

● Then BFS starting at (s, even)!

Cisco Ortega

C: Dethrone Antares Now

● BFS’ing k times takes O(k(2n + 2m)) time.
○ O(k(2n + 2m)) = O(k(n + m)).

● Then just find the node (i, parity) that has minimum
max time; i will then be the meeting point.

● Then, just have people walk to it, and have early
birds go back and forth some arbitrary edge while
waiting for others.

Cisco Ortega

I: Ominous Acids

● Lots of k-ominoes even for small k !
● You can prove the number grows exponentially.
● Numbers up to k = 15:

○ 1, 1, 2, 7, 18, 60, 196, 704, 2500, 9189, 33896, 126759,
476270, 1802312, 6849777

● Last few don’t even fit in 2023×2023 area!
○ This suggests there are impossible cases.

Kevin Atienza

I: Ominous Acids

● Insight:

Kevin Atienza

● k ≥ 7 impossible!

I: Ominous Acids

● All that remains are k ≤ 6.
● k ≤ 3 trivial, can be done by hand.
● With more effort, maybe k = 4 too. And even k = 5.

And even k = 6.
○ Can be tedious though.

Kevin Atienza

I: Ominous Acids

● Insight 2: You have a computer. Use it!
● Backtracking to enumerate all k-ominoes.
● Backtracking to find valid tiling?

○ Can be very hairy.

Kevin Atienza

I: Ominous Acids

● Insight 3: You have paper. Use it!
● You don’t need to code everything.
● Easier to find tiling by hand once you have all

distinct k-ominoes.

Kevin Atienza

I: Ominous Acids

● Insight 4: Just make a neat
tiling, e.g., by building small
rectangular tiles and
assembling them into one.
○ Assembly can be done

manually or with code.

Kevin Atienza

I: Ominous Acids

● Other notes:
○ You can also enumerate k-ominoes by hand, but it’s

risky: easy to make mistake and miss some k-ominoes.
○ You can ignore the reflected k-ominoes. Just take your

final grid, flip, then combine.
■ (Reduces work by ≈ half)

Kevin Atienza

I: Ominous Acids

● Moral: You have brains, paper, and computer.
Use all of them (in the right way) for best results!

Kevin Atienza

L: Starquake!

● Clearly, the naive solution is too slow.
○ nq is large!

● Clearly, we need some data structures.

Cisco Ortega

L: Starquake!

● We need to count landmasses in h[i..j] quickly.
● Assume i, i+1, …, j are initially in separate landmasses.
● Observation: Every consecutive height difference of

-1, 0, or +1 decreases # landmasses by 1.
● Thus, # landmasses in h[i..j] is:

○ (j - i + 1) - (# of -1s, 0s, +1s in difference array.)

Cisco Ortega

L: Starquake!

● We need to process range queries quickly on
difference array
(h[2] - h[1], h[3] - h[2], …, h[n] - h[n-1]).

● We need to know effects of updates in difference
array.

Cisco Ortega

L: Starquake!

● FISSURE i j: changes h[i] - h[i-1] and h[j+1] - h[j], and
nothing else.
○ Middle sections unaffected; they move together.

● EARTHQUAKE: change looks like +1, -1, +1, -1, …

Cisco Ortega

L: Starquake!

● Insight: Split difference array into odd and even
parts.

● Then earthquake becomes
+1, +1, +1, … in one array, and
-1, -1, -1, … in the other!

Cisco Ortega

L: Starquake!

● So now, we have reduced to:
● QUERY: count {-1, 0, +1} in subarray
● FISSURE: Point update
● EARTHQUAKE: Range increase or decrease by 1

Cisco Ortega

L: Starquake!

● We can just use sqrt decomposition to be simple!!
○ I’m not actually sure if there’s a segment tree solution.

● Process √n commands at a time, in roughly O(n).
● If your solution needs some sorting of blocks, then

it might be O((n + q) √n log n).
● It can be improved to O((n + q) √n).

○ (Hint: range updates are only +1 or -1)

Cisco Ortega

G: Irreversible Events

● Only irreversible paths matter.
● i.e., we don’t care about a path a ⇝ b if there’s also

a path b ⇝ a.
○ i.e., we don’t care if scc(a) = scc(b).

● So, look at SCCs
(strongly connected components).

Josh Quinto

G: Irreversible Events

● Where are divergent events?
● Paths need to come from outside SCC.
● We need a pair of such paths not sharing an edge.
● In particular, the last edges to the SCC are different!

Josh Quinto

G: Irreversible Events

● In particular, the last
edges to the SCC are
different:

Josh Quinto

SCC

G: Irreversible Events

● Claim: If 2 edges to the
SCC exist, then some
event is not in continuity.

● So let’s look at graphs
with at most one edge
to each SCC.

Josh Quinto

SCC

G: Irreversible Events

● Observation: If there’s at most one edge to the
SCC, then all paths to it go through that edge.

● Thus, all events in it are in continuity!
● Therefore,

(graph is good) ⇔ (at most one edge to every SCC).

Josh Quinto

G: Irreversible Events

● Greedy? Take SCCs, then remove all but one edge
to each SCC.
○ This gives the answer ∑ max(0, indeg[C]-1) for all SCCs C.

● Is it correct? Greedy needs proof!
● Issue: This doesn’t rule out strategies that break

some SCCs apart.

Josh Quinto

G: Irreversible Events

● Claim: Breaking apart an SCC doesn’t help.
● Need to prove: removing an edge within SCC

doesn’t decrease ∑ max(0, indeg[C]-1), even if the
SCCs change.

Josh Quinto

G: Irreversible Events

● Key: Removing edge in
SCC X yields a DAG of
SCCs with at most one
source (and sink).

Josh Quinto

G: Irreversible Events

● Thus, each old edge to
X still contributes 1 to
∑ max(0, indeg[C]-1),
except possibly for one
edge (to the source).

Josh Quinto

G: Irreversible Events

● Thus, ∑ max(0, indeg[C]-1) stays the same.
● Thus, removing an edge in an SCC doesn’t help.
● Thus, the greedy solution is correct!
● Finding SCCs takes linear time.

○ Kosaraju’s or Tarjan’s algorithm.

Josh Quinto

E: Euclidean Travel with Parallel Universes
● Insight: Teleporting via AB ↔ DC is the same as

going to a “parallel universe”

Kevin Atienza

E: Euclidean Travel with Parallel Universes
● Insight: Teleporting via BC ↔ DA is the same as

going to a “parallel universe” but flipped

Kevin Atienza

E: Euclidean Travel with Parallel Universes

● Insight: Multiple
teleports means
travelling through
multiple parallel
universes in this
tiling:

Kevin Atienza

E: Euclidean Travel with Parallel Universes

● Solution: produce
the 8 neighboring
parallel universes
and find shortest
path to each
image of (xt, yt).

● O(1).

Kevin Atienza

E: Euclidean Travel with Parallel Universes

● WRONG!
● It’s possible to

have lots of
teleports!

Kevin Atienza

E: Euclidean Travel with Parallel Universes

● Let’s simplify
by rotating
the shape so
BC and AD
are vertical.
Then produce
infinite tiling.

Kevin Atienza

E: Euclidean Travel with Parallel Universes

● Insight:
Images of
(xt, yt) form a
union of two
rectangular
lattices:

Kevin Atienza

E: Euclidean Travel with Parallel Universes

● Finding the shortest path from a point to a
rectangular lattice can be done in O(1).
○ Only four candidates to check.

Kevin Atienza

E: Euclidean Travel with Parallel Universes

● Morals:
○ Do simplifying transforms!
○ Draw a lot!
○ Practice geometry!

Kevin Atienza

F: Flow Maximal

● Given (a, c), the max. # of chains in flow is clearly
f = min(2a, 2(c - a)).
○ If a ≤ c/2, each A-bead must be between two non-A-beads.
○ If a ≥ c/2, each non-A-bead must be between two A-beads.
○ We can just assume a ≤ c/2 since A-beads and

non-A-beads are symmetric; we can replace
a := min(a, c - a).

Cisco Ortega

F: Flow Maximal

● Thus, the number of chains “should be”:
choose(c-a, a).
○ (assuming a ≤ c/2)

● BUT this double counts… a lot.
○ (because of rotations and reflections)

Cisco Ortega

F: Flow Maximal

● We can count the distinct chains using a powerful
hammer known as Burnside’s lemma
○ from group theory
○ (# orbits) × (# symmetries)

= ∑ (# fixed points of symmetry S)
the sum runs across all symmetries S

○ generalized by Pólya enumeration
○ Exposition (and proof) here:

https://brilliant.org/wiki/burnsides-lemma/

Cisco Ortega

F: Flow Maximal

● Burnside’s lemma
○ (# orbits) × (# symmetries)

= ∑ (# fixed points of symmetry S)

● # orbits = # distinct objects, i.e., what we need
● For size-n beads, there are 2n symmetries:

○ n rotations and n reflections.
○ a.k.a., “dihedral group”

● Finding # fixed points is usually easy.

Cisco Ortega

F: Flow Maximal
Cisco Ortega

● Working it out, you get a sum of a couple of
binomial coefficients (proof left to reader):

F: Flow Maximal
Cisco Ortega

● Proof left to reader. Some details:
○ choosepal(n, r) = number of palindromic ways to choose.
○ First sum corresponds to # fixed points of rotations.
○ Last three summands correspond to # fixed points of reflections.

F: Flow Maximal

● choose(n, r) can be computed in O(r) time:
(n) (n-1) (n-2) … (n-r+1) / ((r) (r-1) (r-2) … (1))

● Thus, the previous formula can be computed in
O(a log log g) where g = gcd(a, c).
○ Needs the result that σ(n) = O(n log log n).

■ (Grönwall's theorem)

Cisco Ortega

F: Flow Maximal

● Now, we need to sum f(a, c) for a2 + b2 = c2 and
0 ≤ a ≤ c.

● b2 = c2 - a2 = (c - a)(c + a).
● Thus, we want to find all factorizations of b2.

○ We can easily do it after prime-factorizing b (which is fast).

● But a and c can be large, so doing O(a log log g) for
each (a, c) across some range may not cut it!

Cisco Ortega

F: Flow Maximal

● So we have b2 = (c - a)(c + a).
● Insight 1: c - a ≤ c + a, so c - a ≤ √b2 = b.
● Insight 2: A-beads and non-A-beads are

symmetric. There are c - a non-A-beads, therefore
f(a, c) = f(c - a, c)!

Cisco Ortega

F: Flow Maximal

● Insight 1: c - a ≤ b
● Insight 2: f(a, c) = f(c - a, c)
● Combining both insights, c - a ≤ b is small, and

f(a, c) = f(c - a, c) can be computed in
O((c - a) log log (c - a)) = O(b log log b) time.
○ This is now reasonable!

● Thus, the naive summing works after all!

Cisco Ortega

F: Flow Maximal

● Gotcha: b = 0 !!
○ What is the answer?

Cisco Ortega

A: Alien Gordon Ramsey

● Diameter ≤ 4 means radius ≤ 2.
● Let C be a center. Root at C. Then

height = radius ≤ 2.

Kevin Atienza

C

C

A: Alien Gordon Ramsey

● Color C. Then the color of C cannot appear
anywhere else.
○ even at 3rd level.

Kevin Atienza

C

anak

apo

A: Alien Gordon Ramsey

● The children of C must have distinct colors.
● Grandchildren of C may now use these colors.
● But sometimes they’re not enough.
● We need to know how many extra colors are needed.
● There’s a relatively straightforward max-flow/

matching approach
○ but of course it’s too slow

Kevin Atienza

A: Alien Gordon Ramsey

● A few greedy approaches work.
○ I’ll describe one such.

● Insight: Let X be the child of C with fewest
children, say x. Then it’s optimal to use the colors
of x siblings with fewest children.
○ If not enough colors, need extra ones, then repeat!

■ (or binary search it)

● THEN use X’s color under non-chosen siblings.

Kevin Atienza

A: Alien Gordon Ramsey

● Why does it work?
○ Can be intuitively true, but also tricky to rigorously prove.

● A possible proof is to reduce to tournament score
sequences (Landau’s theorem):
○ (s1, s2, …, sn) with 0 ≤ s1 ≤ … ≤ sn and s1 + … + sn = n(n - 1)/2

is a tournament score sequence iff s1 + … + si ≥ i(i - 1)/2
for all i.

○ Proof details omitted. (Left to reader 😊)

Kevin Atienza

A: Alien Gordon Ramsey

● O(n) with the right implementation.
● Maybe O(n log n) if you use a priority queue to find

the fewest-children nodes.
○ May not pass though. Optimization may be needed

Kevin Atienza

D: Eliens Slurs
Kevin Atienza

● Start with a known string matching solution:
via Fast Fourier Transform!

● Two strings X[0..k-1] and Y[0..k-1] match
iff
∑ (X[i] - Y[i])2 = 0.

● So the number of substring matches of S in T is
the number of j such that
∑ (S[i] - T[i+j])2 = 0.

D: Eliens Slurs
Kevin Atienza

● ∑ (S[i] - T[i+j])2

= ∑ S[i]2 - 2 ∑ S[i] T[i+j] + ∑ T[i+j]2

● ∑ S[i]2 are just subarray sums in array (S[i]2).
● ∑ T[i+j]2 are just subarray sums in array (T[i]2).
● ∑ S[i] T[i+j] is a convolution of S and T.

○ Reverse S to see how it is a convolution.

● Convolution can be computed with FFT!

D: Eliens Slurs
Kevin Atienza

● Technique somewhat extensible. We just need to
find an arithmetic expression that’s 0 iff it’s a match.
○ e.g., if S has wildcards (matches any character), then can

use ∑ S[i] (S[i] - T[i+j])2.
■ = ∑ S[i]3 - 2 ∑ S[i]2 T[i+j] + ∑ S[i] T[i+j]2

■ So this needs two convolutions.
(the latter two; the first one is just subarray sums)

D: Eliens Slurs
Kevin Atienza

● Insight: “Difference at most 1” has one such simple
arithmetic expression:
∑ ((X[i] - Y[i])(X[i] - Y[i] + 1)(X[i] - Y[i] - 1))2

● Expand this into a gigantic expression, and you’ll
end up with several FFTs, and some subarray sums.

● There may be too many FFTs? Let’s try reducing.

D: Eliens Slurs
Kevin Atienza

● Trick:
○ Do the FFTs for all arrays

(S[i]), (S[i]2), …, (S[i]5), (T[i]), (T[i]2), …, (T[i]5) first,
○ then do the pointwise products (linear) in freq. space
○ then do a single inverse FFT.

● Reduces # of FFTs from O(d2) to O(d), where
d = degree of expression.
○ Ours has d = 6.

D: Eliens Slurs
Kevin Atienza

● Trick 2: Lower the degree d.
● Note that we cannot use something like

∑ (X[i] - Y[i])(X[i] - Y[i] + 1)(X[i] - Y[i] - 1)
because it has false positives
○ e.g., “CC” is matched with “AE” this way.

● Crucial property: we want the summand to be
nonnegative.

D: Eliens Slurs
Kevin Atienza

● But we can use something like
∑ (X[i] - Y[i])2 (X[i] - Y[i] + 1)(X[i] - Y[i] - 1).

● The summand is 0 if difference in {-1, 0, +1}, and
positive otherwise.
○ We used the fact that X[i] - Y[i] is an integer.

● Degree is now d = 4 !

D: Eliens Slurs
Kevin Atienza

● Combining both techniques, we only need 6 FFTs
(and 1 inverse FFT).

● O(7 (t + s) log (t + s)) = O((t + s) log (t + s)).

D: Eliens Slurs
Kevin Atienza

● Gotcha: FFT mod a prime m2k + 1 may fail!
● We need two such primes ≈ 109 to be completely

sure ∑ (X[i] - Y[i])2 (X[i] - Y[i] + 1) (X[i] - Y[i] - 1) is
nonzero.
○ More primes may be needed for our d = 6 expression.

● Doubles the # of FFTs. Should still pass though
○ if implemented well

● A: Alien Gordon Ramsey - Atienza
● B: Cult of Wah! - Samsung
● C: Dethrone Antares Now - Ortega
● D: Eliens Slurs - Atienza
● E: … Parallel Universes - Atienza
● F: Flow Maximal - Ortega
● G: Irreversible Events - Quinto
● H: Not Just an NP-Hard Problem - Ortega
● I: Ominous Acids - Atienza
● J: Sensor Logs - Samsung
● K: Star Seeker's Socks - Samsung
● L: Starquake! - Ortega
● M: TheBuzz - Samsung

Thank you!

● Gerard Francis Ortega
● Kevin Charles Atienza
● Rene Josiah Quinto
● Samsung R&D Institute

Philippines

