Algolympics 2023

Solution Sketches

Samsung

J: Sensor Logs

- Solution 1: Keep track of the room each person is in at all times.
- Use array.
- Each corridor they go through must connect to that room.
- Sus if this fails!
- The new room is the other endpoint of the corridor.

Samsung

J: Sensor Logs

- Solution 2: If you go through a corridor, you can only go back through the same corridor.
- So each person's log can only look like a abbccd ...
- Last log can be unpaired.
- Can be empty.
- Sus if and only if not of this form.

Samsung

K: Star Seeker's Socks

- Let $\mathrm{t}=$ total number of 'bad' socks.
- Important: each pair has two socks!
- Let $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{m}}$ be the numbers of socks of the 'good' sock types.
- If you take $t+m$ socks, worst case you could have gotten all t bad ones and 1 of each good type. Fail!
- Thus, you need to take at least $\mathrm{t}+\mathrm{m}+1$.

Samsung

K: Star Seeker's Socks

- On the other hand, if you take $t+m+1$ socks, you are forced to have a duplicate good sock of same type.
- Pigeonhole principle.
- So the answer is $t+m+1$.

Samsung

K: Star Seeker's Socks

- Python solution (single case):

```
input() # no need for n, throw it out
c = [2*v for v in map(int, input().split())]
print(sum(c) + 1
    - sum(c[i-1] - 1 for i in map(int, input().split())))
```


Samsung

B: Cult of Wah!

- "Just do it!"
- Put encrypted words in a set, say E.
- For each $\mathrm{k}=1,2,3, \ldots$

■ Shift all Wah-List words by k, then check if they're all in E.

- Return first k that works.
- If no k works, answer is -1 .
- (you can also do it the other way around: put the Wah-List words into a set)

Samsung

B: Cult of Wah!

- Takes $\mathbf{O}(\infty)$ time to finish.
- But just note that shifting by k is the same as shifting by $k+26$, so if none of $1,2, \ldots, 26$ works, none will work at all!

Samsung

B: Cult of Wah!

- Some techniques to make it easier:
- Define a function shift(word, k) that shifts a word by k. Then just call this function many times.
- Some languages have convenient syntax for manipulating sets.
■ E.g., in Python, $x<=y$ means " x is a subset of y ".

Samsung

B: Cult of Wah!

- Gotcha: $\mathrm{k}=26$ is a possible solution, even though it is equivalent to doing nothing!
- $k=0$ is not a positive integer.

Samsung

M: TheBuzz

- We need to find pairing between names and labels
$[1,2, \ldots, n]$ such that
- (name[i], name[j]) is an edge
iff
(label[i], label[j]) is an edge.
- They are of the same type (if they exist).
- This check can be done in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.

Samsung

M: TheBuzz

- Since n is small (≤ 10), just try all possible pairings!
- There are n! pairings.
- $10!=3628800$, so this should pass.

Samsung

M: TheBuzz

- We can simplify things a bit: turn
"no edge between (i, j)" into a 4th type of edge.
- There are now 4 edge types, but the graph is complete, simplifying implementation a bit.
- Objects like this that are invented for convenience are sometimes called dummy or sentinel objects.

Cisco Ortega

H: Not Just an NP-Hard Problem

- Decompose into subproblems.
- For the no-stick-breaking version:
a. Given two beams w/ lengths x and y, find the optimal angle to join them.
b. Given the stick sizes, find the best way to reassemble them.

Cisco Ortega

H: Not Just an NP-Hard Problem

a. Given two beams w/
lengths x and y, find the optimal angle to join them.

- Area = base \cdot height $/ 2$.

base

Cisco Ortega

H: Not Just an NP-Hard Problem

- Fix base x, then rotate y.
- We now need to maximize the height.
- So area is maximized when perpendicular!
- Thus, max. area = xy/2.

Cisco Ortega

H: Not Just an NP-Hard Problem

b. Given the stick sizes, find the best way to reassemble them.

- NP-Hard! This is essentially the subset sum problem.
- No known polynomial-time solutions.
- So let's find a solvable variant.

Cisco Ortega

H: Not Just an NP-Hard Problem

- Suppose you can break sticks at any time. What is the answer?
- You can basically build any beam sizes you want!
- More precisely: If $t=$ total length of sticks, we can produce beams (x, y) iff $\mathrm{x}+\mathrm{y}=\mathrm{t}$.
- (and of course x and y must be positive)

Cisco Ortega

H: Not Just an NP-Hard Problem

- Maximize $x y / 2$ subject to $x+y=t$.
- Basic optimization. The answer is a square: $x=y=t / 2$.
- But x and y need to be integers, so sometimes we must have $|x-y|=1$.
- Thus, the optimal beams are roughly equal:
- ($\mathrm{t} / 2, \mathrm{t} / 2$) if t is even,
- ($\mathrm{t} / 2 \mathrm{~L}],[\mathrm{t} / 2]+1$) if t is odd.
- This solves the "easy" variant.

Cisco Ortega

H: Not Just an NP-Hard Problem

- Insight: You can produce roughly equal beams ($\mathrm{t} / 2, \mathrm{t} / 2$) or ([t/2], [t/2]+1) just by breaking one stick!

Cisco Ortega

H: Not Just an NP-Hard Problem

- Thus, the optimal solution is the same!
- $O(n)$

Cisco Ortega

H: Not Just an NP-Hard Problem

- Gotcha: The middle point may already be cut!
- If so, just cut a random stick.
- Always possible because $x[i] \geq 2$.

Cisco Ortega

C: Dethrone Antares Now

- If staying is okay, then people can wait. So just find the "center" by doing a breadth-first search (BFS) from each of the k sources.
- Doesn't work since staying is not okay.

Cisco Ortega

C: Dethrone Antares Now

- But they can just go back and forth some edge!
- Thus, if they can reach a node at time t, then they can also reach it at $t+2, t+4, t+6, \ldots$
- So, we just need to find earliest time to reach each node in odd time, and also even time.

Cisco Ortega

C: Dethrone Antares Now

- Trick: Build a graph with $2 n$ nodes.
- For each node i,
- add two nodes (i, even) and (i, odd).
- For each edge $i-j$,
- Add edge (i, even) - (j, odd).
- Add edge (i, odd) - (j, even).
- Then BFS starting at (s, even)!

Cisco Ortega

C: Dethrone Antares Now

- BFS'ing k times takes $O(k(2 n+2 m))$ time.
- $\mathrm{O}(\mathrm{k}(2 n+2 m))=\mathrm{O}(k(n+m))$.
- Then just find the node (i, parity) that has minimum max time; i will then be the meeting point.
- Then, just have people walk to it, and have early birds go back and forth some arbitrary edge while waiting for others.

I: Ominous Acids

- Lots of k-ominoes even for small k !
- You can prove the number grows exponentially.
- Numbers up to $k=15$:
- 1, 1, 2, 7, 18, 60, 196, 704, 2500, 9189, 33896, 126759, 476270, 1802312, 6849777
- Last few don't even fit in 2023×2023 area!
- This suggests there are impossible cases.

I: Ominous Acids

- Insight:

- $k \geq 7$ impossible!

Kevin Atienza

I: Ominous Acids

- All that remains are $k \leq 6$.
- $k \leq 3$ trivial, can be done by hand.
- With more effort, maybe $k=4$ too. And even $k=5$.

And even $k=6$.

- Can be tedious though.

I: Ominous Acids

- Insight 2: You have a computer. Use it!
- Backtracking to enumerate all k-ominoes.
- Backtracking to find valid tiling?
- Can be very hairy.

Kevin Atienza

I: Ominous Acids

- Insight 3: You have paper. Use it!
- You don't need to code everything.
- Easier to find tiling by hand once you have all distinct k-ominoes.

I: Ominous Acids

- Insight 4: Just make a neat tiling, e.g., by building small rectangular tiles and assembling them into one.

- Assembly can be done manually or with code.

Kevin Atienza

I: Ominous Acids

- Other notes:
- You can also enumerate k-ominoes by hand, but it's risky: easy to make mistake and miss some k-ominoes.
- You can ignore the reflected k-ominoes. Just take your final grid, flip, then combine.
- (Reduces work by $=$ half)

Kevin Atienza

I: Ominous Acids

- Moral: You have brains, paper, and computer. Use all of them (in the right way) for best results!

Cisco Ortega

L: Starquake!

- Clearly, the naive solution is too slow.
- nq is large!
- Clearly, we need some data structures.

Cisco Ortega

L: Starquake!

- We need to count landmasses in h[i..j] quickly.
- Assume $\mathrm{i}, \mathrm{i}+1, \ldots$, , are initially in separate landmasses.
- Observation: Every consecutive height difference of
-1, 0, or +1 decreases \# landmasses by 1.
- Thus, \# landmasses in h[i..j] is:
- ($\mathrm{j}-\mathrm{i}+1$) - (\# of -1s, 0s, +1s in difference array.)

Cisco Ortega

L: Starquake!

- We need to process range queries quickly on difference array
(h[2] - h[1], h[3] - h[2], ..., h[n] - h[n-1]).
- We need to know effects of updates in difference array.

Cisco Ortega

L: Starquake!

- FISSURE $\mathrm{i} j$: changes h[i] - h[i-1] and h[j+1] - h[j], and nothing else.
- Middle sections unaffected; they move together.
- EARTHQUAKE: change looks like +1, $-1,+1,-1, \ldots$

Cisco Ortega

L: Starquake!

- Insight: Split difference array into odd and even parts.
- Then earthquake becomes
$+1,+1,+1, \ldots$ in one array, and
$-1,-1,-1, \ldots$ in the other!

Cisco Ortega

L: Starquake!

- So now, we have reduced to:
- QUERY: count $\{-1,0,+1\}$ in subarray
- FISSURE: Point update
- EARTHQUAKE: Range increase or decrease by 1

Cisco Ortega

L: Starquake!

- We can just use sqrt decomposition to be simple!!
- l'm not actually sure if there's a segment tree solution.
- Process $\sqrt{ }$ n commands at a time, in roughly $O(n)$.
- If your solution needs some sorting of blocks, then it might be $O((n+q) \sqrt{ } n \log n)$.
- It can be improved to $\mathbf{O}((\mathbf{n}+\mathbf{q}) \sqrt{ } \mathbf{n})$.
- (Hint: range updates are only +1 or -1)

Josh Quinto

G: Irreversible Events

- Only irreversible paths matter.
- i.e., we don't care about a path $a \leadsto b$ if there's also a path $b \leadsto a$.
- i.e., we don't care if $\operatorname{scc}(a)=\operatorname{scc}(b)$.
- So, look at SCCs
(strongly connected components).

Josh Quinto

G: Irreversible Events

- Where are divergent events?
- Paths need to come from outside SCC.
- We need a pair of such paths not sharing an edge.
- In particular, the last edges to the SCC are different!

G: Irreversible Events

- In particular, the last edges to the SCC are different:

Josh Quinto

G: Irreversible Events

- Claim: If 2 edges to the SCC exist, then some event is not in continuity.
- So let's look at graphs with at most one edge to each SCC.

Josh Quinto

G: Irreversible Events

- Observation: If there's at most one edge to the SCC, then all paths to it go through that edge.
- Thus, all events in it are in continuity!
- Therefore,
(graph is good) \Leftrightarrow (at most one edge to every SCC).

Josh Quinto

G: Irreversible Events

- Greedy? Take SCCs, then remove all but one edge to each SCC.
- This gives the answer $\sum \max (0$, indeg[C]-1) for all SCCs C.
- Is it correct? Greedy needs proof!
- Issue: This doesn’t rule out strategies that break some SCCs apart.

Josh Quinto

G: Irreversible Events

- Claim: Breaking apart an SCC doesn't help.
- Need to prove: removing an edge within SCC doesn't decrease $\sum \max (0$, indeg[C]-1), even if the SCCs change.

Josh Quinto

G: Irreversible Events

- Key: Removing edge in SCC \times yields a DAG of SCCs with at most one source (and sink).

G: Irreversible Events

- Thus, each old edge to X still contributes 1 to $\sum \max (0$, indeg[C]-1), except possibly for one edge (to the source).

Josh Quinto

G: Irreversible Events

- Thus, $\Sigma \max (0$, indeg[C]-1) stays the same.
- Thus, removing an edge in an SCC doesn't help.
- Thus, the greedy solution is correct!
- Finding SCCs takes linear time.
- Kosaraju's or Tarjan's algorithm.

Kevin Atienza

E: Euclidean Travel with Parallel Universes

- Insight: Teleporting via $A B \leftrightarrow D C$ is the same as going to a "parallel universe"

Kevin Atienza

E: Euclidean Travel with Parallel Universes

- Insight: Teleporting via BC $\leftrightarrow \mathrm{DA}$ is the same as going to a "parallel universe" but flipped

Kevin Atienza

E: Euclidean Travel with Parallel Universes

- Insight: Multiple teleports means travelling through multiple parallel universes in this tiling:

Kevin Atienza

E: Euclidean Travel with Parallel Universes

- Solution: produce the 8 neighboring parallel universes and find shortest path to each image of $\left(x_{t}, y_{t}\right)$.
- O(1).

E: Euclidean Travel with Parallel Universes

- WRONG!

- It's possible to have lots of teleports!

E: Euclidean Travel with Parallel Universes

Let's simplify by rotating the shape so $B C$ and $A D$ are vertical.
Then produce infinite tiling.

Kevin Atienza

E: Euclidean Travel with Parallel Universes

- Insight: Images of $\left(x_{t}, y_{t}\right)$ form a union of two rectangular lattices:

Kevin Atienza

E: Euclidean Travel with Parallel Universes

- Finding the shortest path from a point to a rectangular lattice can be done in $\mathbf{O}(1)$.
- Only four candidates to check.

E: Euclidean Travel with Parallel Universes

- Morals:
- Do simplifying transforms!
- Draw a lot!
- Practice geometry!

Cisco Ortega

F: Flow Maximal

- Given (a, c), the max. \# of chains in flow is clearly
$f=\min (2 a, 2(c-a))$.
- If $\mathrm{a} \leq \mathrm{c} / 2$, each A -bead must be between two non-A-beads.
- If a \geq c/2, each non-A-bead must be between two A-beads.
- We can just assume $a \leq c / 2$ since A-beads and non-A-beads are symmetric; we can replace a := min(a, c - a).

Cisco Ortega

F: Flow Maximal

- Thus, the number of chains "should be": choose(c-a, a).
- (assuming a $\leq \mathrm{c} / 2$)
- BUT this double counts... a lot.
- (because of rotations and reflections)

Cisco Ortega

F: Flow Maximal

- We can count the distinct chains using a powerful hammer known as Burnside's lemma
- from group theory
- (\# orbits) × (\# symmetries)
$=\Sigma$ (\# fixed points of symmetry S)
the sum runs across all symmetries S
- generalized by Pólya enumeration
- Exposition (and proof) here:

[^0]
Cisco Ortega

F: Flow Maximal

- Burnside's lemma
- (\# orbits) \times (\# symmetries)
$=\Sigma(\#$ fixed points of symmetry S)
- \# orbits = \# distinct objects, i.e., what we need
- For size-n beads, there are $2 n$ symmetries:
- n rotations and n reflections.
- a.k.a., "dihedral group"
- Finding \# fixed points is usually easy.

Cisco Ortega

F: Flow Maximal

- Working it out, you get a sum of a couple of binomial coefficients (proof left to reader):

```
def choosepal(n, r):
    return choosepal(n-1, r) + choosepal(n-1, r-1) if n%2 else 0 if r%2 else choose(n//2, r//2)
def f(a,c):
    a, c = sorted((a, c - a))
    if a == 0: return 1
    g = gcd(a, c)
    ans = sum(choose(c//d, a//d) * phi(d) for d in divisors(g))
    ans += (c - c//2) * choosepal(c, a)
    ans += (c//2) * choosepal(c - 1, a - 1)
    ans += (c//2) * choosepal(c - 1, a)
    return ans//(2*c)
```


Cisco Ortega

F: Flow Maximal

```
def choosepal(n, r):
```

 return choosepal(n-1, r) + choosepal(n-1, r-1) if n\%2 else 0 if r\%2 else choose(n//2, r//2)
 def $f(a, c):$
a, $c=\operatorname{sorted}((a, c-a))$
if a == 0: return 1
$\mathrm{g}=\operatorname{gcd}(\mathrm{a}, \mathrm{c})$
ans $=\operatorname{sum}(c h o o s e(c / / d, ~ a / / d) *$ phi(d) for d in divisors(g))
ans += (c - c//2) * choosepal(c, a)
ans += (c//2) * choosepal(c - 1, a - 1)
ans += (c//2) * choosepal(c - 1, a)
return ans//(2*c)

- Proof left to reader. Some details:
- choosepal(n, r) = number of palindromic ways to choose.
- First sum corresponds to \# fixed points of rotations.
- Last three summands correspond to \# fixed points of reflections.

Cisco Ortega

F: Flow Maximal

- choose(n, r) can be computed in $O(r)$ time: (n) (n-1) (n-2) ... (n-r+1) / ((r) (r-1) (r-2) ... (1))
- Thus, the previous formula can be computed in
$O(a \log \log g)$ where $g=\operatorname{gcd}(a, c)$.
- Needs the result that $\sigma(n)=O(n \log \log n)$.
- (Grönwall's theorem)

Cisco Ortega

F: Flow Maximal

- Now, we need to sum $f(a, c)$ for $a^{2}+b^{2}=c^{2}$ and $0 \leq \mathrm{a} \leq \mathrm{c}$.
- $b^{2}=c^{2}-a^{2}=(c-a)(c+a)$.
- Thus, we want to find all factorizations of b^{2}.
- We can easily do it after prime-factorizing b (which is fast).
- But a and c can be large, so doing O(a log log g) for each (a, c) across some range may not cut it!

Cisco Ortega

F: Flow Maximal

- So we have $b^{2}=(c-a)(c+a)$.
- Insight 1: $c-a \leq c+a$, so $c-a \leq \sqrt{ } b^{2}=b$.
- Insight 2: A-beads and non-A-beads are symmetric. There are c - a non-A-beads, therefore $f(a, c)=f(c-a, c)!$

Cisco Ortega

F: Flow Maximal

- Insight 1: $\mathrm{c}-\mathrm{a} \leq \mathrm{b}$
- Insight 2: $\mathrm{f}(\mathrm{a}, \mathrm{c})=\mathrm{f}(\mathrm{c}-\mathrm{a}, \mathrm{c})$
- Combining both insights, $\mathrm{c}-\mathrm{a} \leq \mathrm{b}$ is small, and $f(a, c)=f(c-a, c)$ can be computed in $O((c-a) \log \log (c-a))=O(b \log \log b)$ time.
- This is now reasonable!
- Thus, the naive summing works after all!

Cisco Ortega

F: Flow Maximal

- Gotcha: $\mathrm{b}=0$!!
- What is the answer?

Kevin Atienza

A: Alien Gordon Ramsey

- Diameter ≤ 4 means radius ≤ 2.
- Let C be a center. Root at C. Then
height $=$ radius ≤ 2.

Kevin Atienza

A: Alien Gordon Ramsey

- Color C. Then the color of C cannot appear anywhere else.
o even at 3rd level.

A: Alien Gordon Ramsey

- The children of C must have distinct colors.
- Grandchildren of C may now use these colors.
- But sometimes they're not enough.
- We need to know how many extra colors are needed.
- There's a relatively straightforward max-flow/ matching approach
- but of course it's too slow

Kevin Atienza

A: Alien Gordon Ramsey

- A few greedy approaches work.
- I'll describe one such.
- Insight: Let X be the child of C with fewest children, say x. Then it's optimal to use the colors of x siblings with fewest children.
- If not enough colors, need extra ones, then repeat!
- (or binary search it)
- THEN use X's color under non-chosen siblings.

Kevin Atienza

A: Alien Gordon Ramsey

- Why does it work?
- Can be intuitively true, but also tricky to rigorously prove.
- A possible proof is to reduce to tournament score sequences (Landau's theorem):
- $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)$ with $0 \leq \mathrm{s}_{1} \leq \ldots \leq \mathrm{s}_{\mathrm{n}}$ and $\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}-1) / 2$ is a tournament score sequence iff $s_{1}+\ldots+s_{i} \geq i(i-1) / 2$ for all i.
- Proof details omitted. (Left to reader (3))

Kevin Atienza

A: Alien Gordon Ramsey

- $O(n)$ with the right implementation.
- Maybe $O(n \log n)$ if you use a priority queue to find the fewest-children nodes.
- May not pass though. Optimization may be needed

Kevin Atienza

D: Eliens Slurs

- Start with a known string matching solution:
via Fast Fourier Transform!
- Two strings X[0..k-1] and Y[0..k-1] match iff
$\Sigma(X[i]-Y[i])^{2}=0$.
- So the number of substring matches of S in T is the number of j such that
$\sum(S[i]-T[i+j])^{2}=0$.

Kevin Atienza

D: Eliens Slurs

- $\Sigma(S[i]-T[i+j])^{2}$
$\left.=\Sigma S[i]^{2}-2 \sum S[i] T[i+j]+\sum T[i+j]\right]^{2}$
- $\quad \Sigma S[i]^{2}$ are just subarray sums in array $\left(S[i]^{2}\right)$.
- $\Sigma T[i+j]^{2}$ are just subarray sums in array $\left(T[i]^{2}\right)$.
- $\Sigma S[i] T[i+j]$ is a convolution of S and T.
- Reverse S to see how it is a convolution.
- Convolution can be computed with FFT!

Kevin Atienza

D：Eliens Slurs

－Technique somewhat extensible．We just need to find an arithmetic expression that＇s 0 iff it＇s a match．
－e．g．，if S has wildcards（matches any character），then can
use $\Sigma S[i](S[i]-T[i+j])^{2}$ ．
■ $=\Sigma S[i]^{3}-2 \Sigma S[i]^{2} T[i+j]+\Sigma S[i] T[i+j]^{2}$
－So this needs two convolutions．
（the latter two；the first one is just subarray sums）

Kevin Atienza

D: Eliens Slurs

 - Inveral

- Insight: "Difference at most 1" has one such simple arithmetic expression:
$\Sigma((X[i]-Y[i])(X[i]-Y[i]+1)(X[i]-Y[i]-1))^{2}$
- Expand this into a gigantic expression, and you'll end up with several FFTs, and some subarray sums.
- There may be too many FFTs? Let's try reducing.

D: Eliens Slurs

- Trick:

- Do the FFTs for all arrays $(S[i]),\left(S[i]^{2}\right), \ldots,\left(S[i]^{5}\right),(T[i]),\left(T[i]^{2}\right), \ldots,\left(T[i]^{5}\right)$ first,
- then do the pointwise products (linear) in freq. space
- then do a single inverse FFT.
- Reduces \# of FFTs from $O\left(d^{2}\right)$ to $O(d)$, where $d=$ degree of expression.
- Ours has d=6.

Kevin Atienza

D：Eliens Slurs

 •」゙いメンン」
－Trick 2：Lower the degree d．
－Note that we cannot use something like
$\Sigma(X[i]-Y[i])(X[i]-Y[i]+1)(X[i]-Y[i]-1)$
because it has false positives
－e．g．，＂CC＂is matched with＂AE＂this way．
－Crucial property：we want the summand to be nonnegative．

Kevin Atienza

D: Eliens Slurs

 - Inwera

- But we can use something like

$$
\Sigma(X[i]-Y[i])^{2}(X[i]-Y[i]+1)(X[i]-Y[i]-1) .
$$

- The summand is 0 if difference in $\{-1,0,+1\}$, and positive otherwise.
- We used the fact that $\mathrm{X}[i]-\mathrm{Y}[i]$ is an integer.
- Degree is now $\mathrm{d}=4$!

Kevin Atienza

D：Eliens Slurs ノがい入ンン」

－Combining both techniques，we only need 6 FFTs （and 1 inverse FFT）．
$\mathrm{O}(7(\mathrm{t}+\mathrm{s}) \log (\mathrm{t}+\mathrm{s}))=\mathrm{O}((\mathrm{t}+\mathrm{s}) \log (\mathrm{t}+\mathrm{s}))$ ．

Kevin Atienza

D: Eliens Slurs

- Gotcha: FFT mod a prime m $2^{\mathrm{k}}+1$ may fail!
- We need two such primes $=10^{9}$ to be completely sure $\sum(X[i]-Y[i])^{2}(X[i]-Y[i]+1)(X[i]-Y[i]-1)$ is nonzero.
- More primes may be needed for our $\mathrm{d}=6$ expression.
- Doubles the \# of FFTs. Should still pass though
- if implemented well

Thank you!

- Gerard Francis Ortega
- Kevin Charles Atienza
- Rene Josiah Quinto
- Samsung R\&D Institute Philippines
- A: Alien Gordon Ramsey - Atienza
- B: Cult of Wah! - Samsung
- C: Dethrone Antares Now - Ortega
- D: Eliens Slurs - Atienza
- E: ... Parallel Universes - Atienza
- F: Flow Maximal - Ortega
- G: Irreversible Events - Quinto
- H: Not Just an NP-Hard Problem - Ortega
- I: Ominous Acids - Atienza
- J: Sensor Logs - Samsung
- K: Star Seeker's Socks - Samsung
- L: Starquake! - Ortega
- M: TheBuzz - Samsung

[^0]: https://brilliant.org/wiki/burnsides-lemma/

